Main Functions

ipctk.construct_friction_constraint_set(*args, **kwargs)

Overloaded function.

  1. construct_friction_constraint_set(mesh: ipc::CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], contact_constraint_set: ipc::Constraints, dhat: float, barrier_stiffness: float, mu: float) -> ipctk.FrictionConstraints

  2. construct_friction_constraint_set(mesh: ipc::CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], contact_constraint_set: ipc::Constraints, dhat: float, barrier_stiffness: float, mus: numpy.ndarray[numpy.float64[m, 1]]) -> ipctk.FrictionConstraints

  3. construct_friction_constraint_set(mesh: ipc::CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], contact_constraint_set: ipc::Constraints, dhat: float, barrier_stiffness: float, mus: numpy.ndarray[numpy.float64[m, 1]], blend_mu: std::function<double (double, double)>) -> ipctk.FrictionConstraints

ipctk.compute_barrier_potential(mesh: ipctk.CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], constraint_set: ipctk.Constraints, dhat: float) float

Compute the barrier potential for a given constraint set.

Parameters:
mesh: ipctk.CollisionMesh

The collision mesh.

V: numpy.ndarray[numpy.float64[m, n]]

Vertices of the collision mesh.

constraint_set: ipctk.Constraints

The set of constraints.

dhat: float

The activation distance of the barrier.

Returns:

The sum of all barrier potentials (not scaled by the barrier stiffness).

ipctk.compute_barrier_potential_gradient(mesh: ipctk.CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], constraint_set: ipctk.Constraints, dhat: float) numpy.ndarray[numpy.float64[m, 1]]

Compute the gradient of the barrier potential.

Parameters:
mesh: ipctk.CollisionMesh

The collision mesh.

V: numpy.ndarray[numpy.float64[m, n]]

Vertices of the collision mesh.

constraint_set: ipctk.Constraints

The set of constraints.

dhat: float

The activation distance of the barrier.

Returns:

The gradient of all barrier potentials (not scaled by the barrier stiffness). This will have a size of V.size.

ipctk.compute_barrier_potential_hessian(mesh: ipctk.CollisionMesh, V: numpy.ndarray[numpy.float64[m, n]], constraint_set: ipctk.Constraints, dhat: float, project_hessian_to_psd: bool = True) scipy.sparse.csc_matrix[numpy.float64]

Compute the hessian of the barrier potential.

Parameters:
mesh: ipctk.CollisionMesh

The collision mesh.

V: numpy.ndarray[numpy.float64[m, n]]

Vertices of the collision mesh.

constraint_set: ipctk.Constraints

The set of constraints.

dhat: float

The activation distance of the barrier.

project_hessian_to_psd: bool = True

Make sure the hessian is positive semi-definite.

Returns:

The hessian of all barrier potentials (not scaled by the barrier stiffness). This will have a shape of `(V.size, V.size).

ipctk.compute_friction_potential(mesh: ipc::CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], friction_constraint_set: ipctk.FrictionConstraints, epsv_times_h: float) float

Compute the friction potential between to positions.

Parameters:
V0

Vertex positions at start of time-step (rowwise)

V1

Current vertex positions (rowwise)

E

Edge vertex indicies

F

Face vertex indicies (empty in 2D)

friction_constraint_set

epsv_times_h

ipctk.compute_friction_potential_gradient(mesh: ipc::CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], friction_constraint_set: ipctk.FrictionConstraints, epsv_times_h: float) numpy.ndarray[numpy.float64[m, 1]]
ipctk.compute_friction_potential_hessian(mesh: ipc::CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], friction_constraint_set: ipctk.FrictionConstraints, epsv_times_h: float, project_hessian_to_psd: bool = True) scipy.sparse.csc_matrix[numpy.float64]
ipctk.is_step_collision_free(*args, **kwargs)

Overloaded function.

  1. is_step_collision_free(mesh: ipctk.CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>, min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) -> bool

    Determine if the step is collision free.

    Note:

    Assumes the trajectory is linear.

    Parameters:

    mesh: The collision mesh. V0: Surface vertex positions at start as rows of a matrix. V1: Surface vertex positions at end as rows of a matrix.

    Returns:

    True if <b>any</b> collisions occur.

  2. is_step_collision_free(candidates: ipctk.Candidates, mesh: ipctk.CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) -> bool

    Determine if the step is collision free from a set of candidates.

    Note:

    Assumes the trajectory is linear.

    Parameters:

    candidates: Set of candidates to check for collisions. mesh: The collision mesh. V0: Surface vertex positions at start as rows of a matrix. V1: Surface vertex positions at end as rows of a matrix.

    Returns:

    True if <b>any</b> collisions occur.

ipctk.compute_collision_free_stepsize(*args, **kwargs)

Overloaded function.

  1. compute_collision_free_stepsize(mesh: ipctk.CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>, min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) -> float

    Computes a maximal step size that is collision free.

    Note:

    Assumes the trajectory is linear.

    Parameters:

    mesh: The collision mesh. V0: Vertex positions at start as rows of a matrix. Assumes V0 is intersection free. V1: Surface vertex positions at end as rows of a matrix.

    Returns:

    A step-size $in [0, 1]$ that is collision free. A value of 1.0 if a full step and 0.0 is no step.

  2. compute_collision_free_stepsize(candidates: ipctk.Candidates, mesh: ipctk.CollisionMesh, V0: numpy.ndarray[numpy.float64[m, n]], V1: numpy.ndarray[numpy.float64[m, n]], min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) -> float

    Computes a maximal step size that is collision free using a set of collision candidates.

    Note:

    Assumes the trajectory is linear.

    Parameters:

    candidates: Set of candidates to check for collisions. mesh: The collision mesh. V0: Vertex positions at start as rows of a matrix. Assumes V0 is intersection free. V1: Surface vertex positions at end as rows of a matrix.

    Returns:

    A step-size $in [0, 1]$ that is collision free. A value of 1.0 if a full step and 0.0 is no step.