Friction

Friction Constraints

class ipctk.FrictionConstraints

Bases: pybind11_object

Public Methods:

__init__(self)

build(*args, **kwargs)

Overloaded function.

compute_potential(self, mesh, velocity, n]], ...)

Compute the friction dissapative potential from the given velocity.

compute_potential_gradient(self, mesh, ...)

Compute the gradient of the friction dissapative potential wrt the velocity.

compute_potential_hessian(self, mesh, ...)

Compute the Hessian of the friction dissapative potential wrt the velocity.

compute_force(self, mesh, rest_positions, ...)

Compute the friction force from the given velocity.

compute_force_jacobian(self, mesh, ...)

Compute the Jacobian of the friction force wrt the velocity.

__len__(self)

Get the number of friction constraints.

empty(self)

Get if the friction constraints are empty.

clear(self)

Clear the friction constraints.

__getitem__(self, idx)

Get a reference to constriant idx.

default_blend_mu(mu0, mu1)

Inherited from pybind11_object

__annotations__ = {}
__getitem__(self, idx: int) ipc::FrictionConstraint

Get a reference to constriant idx.

Parameters:
idx: int

The index of the constraint.

Returns:

A reference to the constraint.

__init__(self)
__len__(self) int

Get the number of friction constraints.

__module__ = 'ipctk'
build(*args, **kwargs)

Overloaded function.

  1. build(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, vertices: numpy.ndarray[numpy.float64[m, n]], contact_constraints: ipctk.CollisionConstraints, dhat: float, barrier_stiffness: float, mu: float) -> None

  2. build(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, vertices: numpy.ndarray[numpy.float64[m, n]], contact_constraints: ipctk.CollisionConstraints, dhat: float, barrier_stiffness: float, mus: numpy.ndarray[numpy.float64[m, 1]]) -> None

  3. build(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, vertices: numpy.ndarray[numpy.float64[m, n]], contact_constraints: ipctk.CollisionConstraints, dhat: float, barrier_stiffness: float, mus: numpy.ndarray[numpy.float64[m, 1]], blend_mu: Callable[[float, float], float]) -> None

clear(self) None

Clear the friction constraints.

compute_force(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, rest_positions: numpy.ndarray[numpy.float64[m, n]], lagged_displacements: numpy.ndarray[numpy.float64[m, n]], velocities: numpy.ndarray[numpy.float64[m, n]], dhat: float, barrier_stiffness: float, epsv: float, dmin: float = 0, no_mu: bool = False) numpy.ndarray[numpy.float64[m, 1]]

Compute the friction force from the given velocity.

Parameters:
mesh

The collision mesh.

rest_positions

Rest positions of the vertices (rowwise).

lagged_displacements

Previous displacements of the vertices (rowwise).

velocities

Current displacements of the vertices (rowwise).

dhat

Barrier activation distance.

barrier_stiffness

Barrier stiffness.

epsv

Mollifier parameter \(\epsilon_v\).

dmin

Minimum distance to use for the barrier.

no_mu

whether to not multiply by mu

Returns:

The friction force.

compute_force_jacobian(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, rest_positions: numpy.ndarray[numpy.float64[m, n]], lagged_displacements: numpy.ndarray[numpy.float64[m, n]], velocities: numpy.ndarray[numpy.float64[m, n]], dhat: float, barrier_stiffness: float, epsv: float, wrt: ipc::FrictionConstraint::DiffWRT, dmin: float = 0) scipy.sparse.csc_matrix[numpy.float64]

Compute the Jacobian of the friction force wrt the velocity.

Parameters:
mesh

The collision mesh.

rest_positions

Rest positions of the vertices (rowwise).

lagged_displacements

Previous displacements of the vertices (rowwise).

velocities

Current displacements of the vertices (rowwise).

dhat

Barrier activation distance.

barrier_stiffness

Barrier stiffness.

epsv

Mollifier parameter \(\epsilon_v\).

wrt

The variable to take the derivative with respect to.

dmin

Minimum distance to use for the barrier.

Returns:

The Jacobian of the friction force wrt the velocity.

compute_potential(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, velocity: numpy.ndarray[numpy.float64[m, n]], epsv: float) float

Compute the friction dissapative potential from the given velocity.

Parameters:
mesh

The collision mesh.

velocity

Current vertex velocity (rowwise).

epsv

Mollifier parameter \(\epsilon_v\).

Returns:

The friction dissapative potential.

compute_potential_gradient(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, velocity: numpy.ndarray[numpy.float64[m, n]], epsv: float) numpy.ndarray[numpy.float64[m, 1]]

Compute the gradient of the friction dissapative potential wrt the velocity.

Parameters:
mesh

The collision mesh.

velocity

Current vertex velocity (rowwise).

epsv

Mollifier parameter \(\epsilon_v\).

Returns:

The gradient of the friction dissapative potential wrt the velocity.

compute_potential_hessian(self: ipctk.FrictionConstraints, mesh: ipc::CollisionMesh, velocity: numpy.ndarray[numpy.float64[m, n]], epsv: float, project_hessian_to_psd: bool = False) scipy.sparse.csc_matrix[numpy.float64]

Compute the Hessian of the friction dissapative potential wrt the velocity.

Parameters:
mesh

The collision mesh.

velocity

Current vertex velocity (rowwise).

epsv

Mollifier parameter \(\epsilon_v\).

project_hessian_to_psd

If true, project the Hessian to be positive semi-definite.

Returns:

The Hessian of the friction dissapative potential wrt the velocity.

static default_blend_mu(mu0: float, mu1: float) float
property ee_constraints : list[ipc::EdgeEdgeFrictionConstraint]
empty(self) bool

Get if the friction constraints are empty.

property ev_constraints : list[ipc::EdgeVertexFrictionConstraint]
property fv_constraints : list[ipc::FaceVertexFrictionConstraint]
property vv_constraints : list[ipc::VertexVertexFrictionConstraint]

Friction Constraint

class ipctk.FrictionConstraint

Bases: CollisionStencil

Public Data Attributes:

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

normal_force_magnitude

Contact force magnitude

mu

Coefficient of friction

weight

Weight

weight_gradient

Gradient of weight with respect to all DOF

closest_point

Barycentric coordinates of the closest point(s)

tangent_basis

Tangent basis of the contact (max size 3×2)

Public Methods:

__init__(*args, **kwargs)

compute_potential(self, velocities, edges, ...)

Compute the friction dissapative potential.

compute_potential_gradient(self, velocities, ...)

Compute the friction dissapative potential gradient wrt velocities.

compute_potential_hessian(self, velocities, ...)

Compute the friction dissapative potential hessian wrt velocities.

compute_force(self, rest_positions, ...[, ...])

Compute the friction force.

compute_force_jacobian(self, rest_positions, ...)

Compute the friction force Jacobian.

Inherited from CollisionStencil

__init__(*args, **kwargs)

num_vertices(self)

Get the number of vertices in the contact stencil.

vertex_ids(self, edges, faces)

Get the vertex IDs of the contact stencil.

vertices(self, vertices, edges, faces)

Get the vertex attributes of the contact stencil.

dof(self, X, edges, faces)

Select this stencil's DOF from the full matrix of DOF.

compute_distance(self, vertices, edges, faces)

Compute the distance of the stencil.

compute_distance_gradient(self, vertices, ...)

Compute the distance gradient of the stencil w.r.t.

compute_distance_hessian(self, vertices, ...)

Compute the distance Hessian of the stencil w.r.t.

Inherited from pybind11_object

class DiffWRT

Bases: pybind11_object

Members:

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

LAGGED_DISPLACEMENTS = <DiffWRT.LAGGED_DISPLACEMENTS: 1>
REST_POSITIONS = <DiffWRT.REST_POSITIONS: 0>
VELOCITIES = <DiffWRT.VELOCITIES: 2>
__annotations__ = {}
__eq__(self, other: object) bool
__getstate__(self) int
__hash__(self) int
__index__(self) int
__init__(self, value: int)
__int__(self) int
__members__ = {'LAGGED_DISPLACEMENTS': <DiffWRT.LAGGED_DISPLACEMENTS: 1>, 'REST_POSITIONS': <DiffWRT.REST_POSITIONS: 0>, 'VELOCITIES': <DiffWRT.VELOCITIES: 2>}
__module__ = 'ipctk'
__ne__(self, other: object) bool
__repr__(self) str
__setstate__(self, state: int) None
__str__()

name(self: handle) -> str

property name : str
property value : int
LAGGED_DISPLACEMENTS = <DiffWRT.LAGGED_DISPLACEMENTS: 1>
REST_POSITIONS = <DiffWRT.REST_POSITIONS: 0>
VELOCITIES = <DiffWRT.VELOCITIES: 2>
__annotations__ = {}
__init__(*args, **kwargs)
__module__ = 'ipctk'
property closest_point : numpy.ndarray[numpy.float64[m, 1]]

Barycentric coordinates of the closest point(s)

compute_force(self, rest_positions: numpy.ndarray[numpy.float64[m, n]], lagged_displacements: numpy.ndarray[numpy.float64[m, n]], velocities: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float, epsv: float, dmin: float = 0, no_mu: bool = False) numpy.ndarray[numpy.float64[m, 1]]

Compute the friction force.

Parameters:
rest_positions: numpy.ndarray[numpy.float64[m, n]]

Rest positions of the vertices (rowwise).

lagged_displacements: numpy.ndarray[numpy.float64[m, n]]

Previous displacements of the vertices (rowwise).

velocities: numpy.ndarray[numpy.float64[m, n]]

Current displacements of the vertices (rowwise).

edges: numpy.ndarray[numpy.int32[m, n]]

Collision mesh edges

faces: numpy.ndarray[numpy.int32[m, n]]

Collision mesh faces

dhat: float

Barrier activation distance

barrier_stiffness: float

Barrier stiffness

epsv: float

Smooth friction mollifier parameter \(\epsilon_v\).

dmin: float = 0

Minimum distance

no_mu: bool = False

Whether to not multiply by mu

Returns:

Friction force

compute_force_jacobian(self, rest_positions: numpy.ndarray[numpy.float64[m, n]], lagged_displacements: numpy.ndarray[numpy.float64[m, n]], velocities: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float, epsv: float, wrt: ipctk.FrictionConstraint.DiffWRT, dmin: float = 0) numpy.ndarray[numpy.float64[m, n]]

Compute the friction force Jacobian.

Parameters:
rest_positions: numpy.ndarray[numpy.float64[m, n]]

Rest positions of the vertices (rowwise).

lagged_displacements: numpy.ndarray[numpy.float64[m, n]]

Previous displacements of the vertices (rowwise).

velocities: numpy.ndarray[numpy.float64[m, n]]

Current displacements of the vertices (rowwise).

edges: numpy.ndarray[numpy.int32[m, n]]

Collision mesh edges

faces: numpy.ndarray[numpy.int32[m, n]]

Collision mesh faces

dhat: float

Barrier activation distance

barrier_stiffness: float

Barrier stiffness

epsv: float

Smooth friction mollifier parameter \(\epsilon_v\).

wrt: ipctk.FrictionConstraint.DiffWRT

Variable to differentiate the friction force with respect to.

dmin: float = 0

Minimum distance

Returns:

Friction force Jacobian

compute_potential(self, velocities: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], epsv: float) float

Compute the friction dissapative potential.

Parameters:
velocities: numpy.ndarray[numpy.float64[m, n]]

Velocities of the vertices (rowwise)

edges: numpy.ndarray[numpy.int32[m, n]]

Edges of the mesh

faces: numpy.ndarray[numpy.int32[m, n]]

Faces of the mesh

epsv: float

Smooth friction mollifier parameter \(\epsilon_v\).

Returns:

The friction dissapative potential.

compute_potential_gradient(self, velocities: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], epsv: float) numpy.ndarray[numpy.float64[m, 1]]

Compute the friction dissapative potential gradient wrt velocities.

Parameters:
velocities: numpy.ndarray[numpy.float64[m, n]]

Velocities of the vertices (rowwise)

edges: numpy.ndarray[numpy.int32[m, n]]

Edges of the mesh

faces: numpy.ndarray[numpy.int32[m, n]]

Faces of the mesh

epsv: float

Smooth friction mollifier parameter \(\epsilon_v\).

Returns:

Gradient of the friction dissapative potential wrt velocities

compute_potential_hessian(self, velocities: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], epsv: float, project_hessian_to_psd: bool) numpy.ndarray[numpy.float64[m, n]]

Compute the friction dissapative potential hessian wrt velocities.

Parameters:
velocities: numpy.ndarray[numpy.float64[m, n]]

Velocities of the vertices (rowwise)

edges: numpy.ndarray[numpy.int32[m, n]]

Edges of the mesh

faces: numpy.ndarray[numpy.int32[m, n]]

Faces of the mesh

epsv: float

Smooth friction mollifier parameter \(\epsilon_v\).

project_hessian_to_psd: bool

Project the hessian to PSD

Returns:

Hessian of the friction dissapative potential wrt velocities

property mu : float

Coefficient of friction

property normal_force_magnitude : float

Contact force magnitude

property tangent_basis : numpy.ndarray[numpy.float64[m, n]]

Tangent basis of the contact (max size 3×2)

property weight : float

Weight

property weight_gradient : scipy.sparse.csc_matrix[numpy.float64]

Gradient of weight with respect to all DOF

Vertex-Vertex Friction Constraint

class ipctk.VertexVertexFrictionConstraint

Bases: VertexVertexCandidate, FrictionConstraint

Public Data Attributes:

Inherited from VertexVertexCandidate

vertex0_id

ID of the first vertex

vertex1_id

ID of the second vertex

Inherited from FrictionConstraint

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

normal_force_magnitude

Contact force magnitude

mu

Coefficient of friction

weight

Weight

weight_gradient

Gradient of weight with respect to all DOF

closest_point

Barycentric coordinates of the closest point(s)

tangent_basis

Tangent basis of the contact (max size 3×2)

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

Inherited from VertexVertexCandidate

__init__(self, vertex0_id, vertex1_id)

__str__(self)

__repr__(self)

num_vertices(self)

vertex_ids(self, edges, faces)

Get the indices of the vertices

__eq__(self, other)

__ne__(self, other)

__lt__(self, other)

Compare EdgeVertexCandidates for sorting.

Inherited from FrictionConstraint

__init__(*args, **kwargs)

compute_potential(self, velocities, edges, ...)

Compute the friction dissapative potential.

compute_potential_gradient(self, velocities, ...)

Compute the friction dissapative potential gradient wrt velocities.

compute_potential_hessian(self, velocities, ...)

Compute the friction dissapative potential hessian wrt velocities.

compute_force(self, rest_positions, ...[, ...])

Compute the friction force.

compute_force_jacobian(self, rest_positions, ...)

Compute the friction force Jacobian.

Inherited from CollisionStencil

__init__(*args, **kwargs)

num_vertices(self)

Get the number of vertices in the contact stencil.

vertex_ids(self, edges, faces)

Get the vertex IDs of the contact stencil.

vertices(self, vertices, edges, faces)

Get the vertex attributes of the contact stencil.

dof(self, X, edges, faces)

Select this stencil's DOF from the full matrix of DOF.

compute_distance(self, vertices, edges, faces)

Compute the distance of the stencil.

compute_distance_gradient(self, vertices, ...)

Compute the distance gradient of the stencil w.r.t.

compute_distance_hessian(self, vertices, ...)

Compute the distance Hessian of the stencil w.r.t.

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.VertexVertexFrictionConstraint, constraint: ipctk.VertexVertexConstraint) -> None

  2. __init__(self: ipctk.VertexVertexFrictionConstraint, constraint: ipctk.VertexVertexConstraint, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float) -> None

__module__ = 'ipctk'

Edge-Vertex Friction Constraint

class ipctk.EdgeVertexFrictionConstraint

Bases: EdgeVertexCandidate, FrictionConstraint

Public Data Attributes:

Inherited from EdgeVertexCandidate

edge_id

ID of the edge

vertex_id

ID of the vertex

Inherited from FrictionConstraint

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

normal_force_magnitude

Contact force magnitude

mu

Coefficient of friction

weight

Weight

weight_gradient

Gradient of weight with respect to all DOF

closest_point

Barycentric coordinates of the closest point(s)

tangent_basis

Tangent basis of the contact (max size 3×2)

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

Inherited from EdgeVertexCandidate

__init__(self, edge_id, vertex_id)

__str__(self)

__repr__(self)

num_vertices(self)

vertex_ids(self, edges, faces)

ccd(self, vertices_t0, vertices_t1, edges, faces)

Perform narrow-phase CCD on the candidate.

print_ccd_query(self, vertices_t0, ...)

__eq__(self, other)

__ne__(self, other)

__lt__(self, other)

Compare EdgeVertexCandidates for sorting.

Inherited from FrictionConstraint

__init__(*args, **kwargs)

compute_potential(self, velocities, edges, ...)

Compute the friction dissapative potential.

compute_potential_gradient(self, velocities, ...)

Compute the friction dissapative potential gradient wrt velocities.

compute_potential_hessian(self, velocities, ...)

Compute the friction dissapative potential hessian wrt velocities.

compute_force(self, rest_positions, ...[, ...])

Compute the friction force.

compute_force_jacobian(self, rest_positions, ...)

Compute the friction force Jacobian.

Inherited from CollisionStencil

__init__(*args, **kwargs)

num_vertices(self)

Get the number of vertices in the contact stencil.

vertex_ids(self, edges, faces)

Get the vertex IDs of the contact stencil.

vertices(self, vertices, edges, faces)

Get the vertex attributes of the contact stencil.

dof(self, X, edges, faces)

Select this stencil's DOF from the full matrix of DOF.

compute_distance(self, vertices, edges, faces)

Compute the distance of the stencil.

compute_distance_gradient(self, vertices, ...)

Compute the distance gradient of the stencil w.r.t.

compute_distance_hessian(self, vertices, ...)

Compute the distance Hessian of the stencil w.r.t.

Inherited from ContinuousCollisionCandidate

__init__(*args, **kwargs)

ccd(self, vertices_t0, vertices_t1, edges, faces)

Perform narrow-phase CCD on the candidate.

print_ccd_query(self, vertices_t0, ...)

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.EdgeVertexFrictionConstraint, constraint: ipctk.EdgeVertexConstraint) -> None

  2. __init__(self: ipctk.EdgeVertexFrictionConstraint, constraint: ipctk.EdgeVertexConstraint, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float) -> None

__module__ = 'ipctk'

Edge-Edge Friction Constraint

class ipctk.EdgeEdgeFrictionConstraint

Bases: EdgeEdgeCandidate, FrictionConstraint

Public Data Attributes:

Inherited from EdgeEdgeCandidate

edge0_id

ID of the first edge

edge1_id

ID of the second edge

Inherited from FrictionConstraint

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

normal_force_magnitude

Contact force magnitude

mu

Coefficient of friction

weight

Weight

weight_gradient

Gradient of weight with respect to all DOF

closest_point

Barycentric coordinates of the closest point(s)

tangent_basis

Tangent basis of the contact (max size 3×2)

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

Inherited from EdgeEdgeCandidate

__init__(self, edge0_id, edge1_id)

__str__(self)

__repr__(self)

num_vertices(self)

vertex_ids(self, edges, faces)

ccd(self, vertices_t0, vertices_t1, edges, faces)

Perform narrow-phase CCD on the candidate.

print_ccd_query(self, vertices_t0, ...)

__eq__(self, other)

__ne__(self, other)

__lt__(self, other)

Compare EdgeEdgeCandidates for sorting.

Inherited from FrictionConstraint

__init__(*args, **kwargs)

compute_potential(self, velocities, edges, ...)

Compute the friction dissapative potential.

compute_potential_gradient(self, velocities, ...)

Compute the friction dissapative potential gradient wrt velocities.

compute_potential_hessian(self, velocities, ...)

Compute the friction dissapative potential hessian wrt velocities.

compute_force(self, rest_positions, ...[, ...])

Compute the friction force.

compute_force_jacobian(self, rest_positions, ...)

Compute the friction force Jacobian.

Inherited from CollisionStencil

__init__(*args, **kwargs)

num_vertices(self)

Get the number of vertices in the contact stencil.

vertex_ids(self, edges, faces)

Get the vertex IDs of the contact stencil.

vertices(self, vertices, edges, faces)

Get the vertex attributes of the contact stencil.

dof(self, X, edges, faces)

Select this stencil's DOF from the full matrix of DOF.

compute_distance(self, vertices, edges, faces)

Compute the distance of the stencil.

compute_distance_gradient(self, vertices, ...)

Compute the distance gradient of the stencil w.r.t.

compute_distance_hessian(self, vertices, ...)

Compute the distance Hessian of the stencil w.r.t.

Inherited from ContinuousCollisionCandidate

__init__(*args, **kwargs)

ccd(self, vertices_t0, vertices_t1, edges, faces)

Perform narrow-phase CCD on the candidate.

print_ccd_query(self, vertices_t0, ...)

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.EdgeEdgeFrictionConstraint, constraint: ipctk.EdgeEdgeConstraint) -> None

  2. __init__(self: ipctk.EdgeEdgeFrictionConstraint, constraint: ipctk.EdgeEdgeConstraint, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float) -> None

__module__ = 'ipctk'

Triangle-Vertex Friction Constraint

class ipctk.FaceVertexFrictionConstraint

Bases: FaceVertexCandidate, FrictionConstraint

Public Data Attributes:

Inherited from FaceVertexCandidate

face_id

ID of the face

vertex_id

ID of the vertex

Inherited from FrictionConstraint

REST_POSITIONS

LAGGED_DISPLACEMENTS

VELOCITIES

normal_force_magnitude

Contact force magnitude

mu

Coefficient of friction

weight

Weight

weight_gradient

Gradient of weight with respect to all DOF

closest_point

Barycentric coordinates of the closest point(s)

tangent_basis

Tangent basis of the contact (max size 3×2)

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

Inherited from FaceVertexCandidate

__init__(self, face_id, vertex_id)

__str__(self)

__repr__(self)

num_vertices(self)

vertex_ids(self, edges, faces)

ccd(self, vertices_t0, vertices_t1, edges, faces)

print_ccd_query(self, vertices_t0, ...)

__eq__(self, other)

__ne__(self, other)

__lt__(self, other)

Compare FaceVertexCandidate for sorting.

Inherited from FrictionConstraint

__init__(*args, **kwargs)

compute_potential(self, velocities, edges, ...)

Compute the friction dissapative potential.

compute_potential_gradient(self, velocities, ...)

Compute the friction dissapative potential gradient wrt velocities.

compute_potential_hessian(self, velocities, ...)

Compute the friction dissapative potential hessian wrt velocities.

compute_force(self, rest_positions, ...[, ...])

Compute the friction force.

compute_force_jacobian(self, rest_positions, ...)

Compute the friction force Jacobian.

Inherited from CollisionStencil

__init__(*args, **kwargs)

num_vertices(self)

Get the number of vertices in the contact stencil.

vertex_ids(self, edges, faces)

Get the vertex IDs of the contact stencil.

vertices(self, vertices, edges, faces)

Get the vertex attributes of the contact stencil.

dof(self, X, edges, faces)

Select this stencil's DOF from the full matrix of DOF.

compute_distance(self, vertices, edges, faces)

Compute the distance of the stencil.

compute_distance_gradient(self, vertices, ...)

Compute the distance gradient of the stencil w.r.t.

compute_distance_hessian(self, vertices, ...)

Compute the distance Hessian of the stencil w.r.t.

Inherited from ContinuousCollisionCandidate

__init__(*args, **kwargs)

ccd(self, vertices_t0, vertices_t1, edges, faces)

Perform narrow-phase CCD on the candidate.

print_ccd_query(self, vertices_t0, ...)

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.FaceVertexFrictionConstraint, constraint: ipctk.FaceVertexConstraint) -> None

  2. __init__(self: ipctk.FaceVertexFrictionConstraint, constraint: ipctk.FaceVertexConstraint, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], dhat: float, barrier_stiffness: float) -> None

__module__ = 'ipctk'

Smooth Mollifier

ipctk.f0_SF(s: float, epsv: float) float

Smooth friction mollifier function.

\[f_0(s)= \begin{cases} -\frac{s^3}{3\epsilon_v^2} + \frac{s^2}{\epsilon_v} + \frac{\epsilon_v}{3}, & |s| < \epsilon_v \newline s, & |s| \geq \epsilon_v \end{cases}\]
Parameters:
s: float

The tangential relative speed.

epsv: float

Mollifier parameter \(\epsilon_v\).

Returns:

The value of the mollifier function at s.

ipctk.f1_SF_over_x(s: float, epsv: float) float

Compute the derivative of f0_SF divided by s (\(\frac{f_0'(s)}{s}\)).

\[f_1(s) = f_0'(s) = \begin{cases} -\frac{s^2}{\epsilon_v^2}+\frac{2 s}{\epsilon_v}, & |s| < \epsilon_v \newline 1, & |s| \geq \epsilon_v \end{cases}\]
\[\frac{f_1(s)}{s} = \begin{cases} -\frac{s}{\epsilon_v^2}+\frac{2}{\epsilon_v}, & |s| < \epsilon_v \newline \frac{1}{s}, & |s| \geq \epsilon_v \end{cases}\]
Parameters:
s: float

The tangential relative speed.

epsv: float

Mollifier parameter \(\epsilon_v\).

Returns:

The value of the derivative of f0_SF divided by s.

ipctk.df1_x_minus_f1_over_x3(s: float, epsv: float) float

The derivative of f1 times s minus f1 all divided by s cubed.

\[\frac{f_1'(s) s - f_1(s)}{s^3} = \begin{cases} -\frac{1}{s \epsilon_v^2}, & |s| < \epsilon_v \newline -\frac{1}{s^3}, & |s| \geq \epsilon_v \end{cases}\]
Parameters:
s: float

The tangential relative speed.

epsv: float

Mollifier parameter \(\epsilon_v\).

Returns:

The derivative of f1 times s minus f1 all divided by s cubed.

Normal Force Magnitude

ipctk.compute_normal_force_magnitude(distance_squared: float, dhat: float, barrier_stiffness: float, dmin: float = 0) float
ipctk.compute_normal_force_magnitude_gradient(distance_squared: float, distance_squared_gradient: numpy.ndarray[numpy.float64[m, 1]], dhat: float, barrier_stiffness: float, dmin: float = 0) numpy.ndarray[numpy.float64[m, 1]]

Tangent Basis

ipctk.point_point_tangent_basis(p0: numpy.ndarray[numpy.float64[m, 1]], p1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]

Compute a basis for the space tangent to the point-point pair.

Parameters:
p0: numpy.ndarray[numpy.float64[m, 1]]

First point

p1: numpy.ndarray[numpy.float64[m, 1]]

Second point

Returns:

A 3x2 matrix whose columns are the basis vectors.

ipctk.point_edge_tangent_basis(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
ipctk.edge_edge_tangent_basis(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 2]]

Compute a basis for the space tangent to the edge-edge pair.

ipctk.point_triangle_tangent_basis(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[3, 2]]

Compute a basis for the space tangent to the point-triangle pair.

\[\begin{bmatrix} \frac{t_1 - t_0}{\|t_1 - t_0\|} & \frac{((t_1 - t_0)\times(t_2 - t_0)) \times(t_1 - t_0)}{\|((t_1 - t_0)\times(t_2 - t_0))\times(t_1 - t_0)\|} \end{bmatrix}\]
Parameters:
p: numpy.ndarray[numpy.float64[3, 1]]

Point

t0: numpy.ndarray[numpy.float64[3, 1]]

Triangle’s first vertex

t1: numpy.ndarray[numpy.float64[3, 1]]

Triangle’s second vertex

t2: numpy.ndarray[numpy.float64[3, 1]]

Triangle’s third vertex

Returns:

A 3x2 matrix whose columns are the basis vectors.

Tangent Basis Jacobians

ipctk.point_point_tangent_basis_jacobian(p0: numpy.ndarray[numpy.float64[m, 1]], p1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
ipctk.point_edge_tangent_basis_jacobian(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]
ipctk.edge_edge_tangent_basis_jacobian(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[36, 2]]
ipctk.point_triangle_tangent_basis_jacobian(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[36, 2]]

Relative Velocity

ipctk.point_point_relative_velocity(dp0: numpy.ndarray[numpy.float64[m, 1]], dp1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]

Compute the relative velocity of two points

Parameters:
dp0: numpy.ndarray[numpy.float64[m, 1]]

Velocity of the first point

dp1: numpy.ndarray[numpy.float64[m, 1]]

Velocity of the second point

Returns:

The relative velocity of the two points

ipctk.point_edge_relative_velocity(dp: numpy.ndarray[numpy.float64[m, 1]], de0: numpy.ndarray[numpy.float64[m, 1]], de1: numpy.ndarray[numpy.float64[m, 1]], alpha: float) numpy.ndarray[numpy.float64[m, 1]]

Compute the relative velocity of a point and an edge

Parameters:
dp: numpy.ndarray[numpy.float64[m, 1]]

Velocity of the point

de0: numpy.ndarray[numpy.float64[m, 1]]

Velocity of the first endpoint of the edge

de1: numpy.ndarray[numpy.float64[m, 1]]

Velocity of the second endpoint of the edge

alpha: float

Parametric coordinate of the closest point on the edge

Returns:

The relative velocity of the point and the edge

ipctk.edge_edge_relative_velocity(dea0: numpy.ndarray[numpy.float64[3, 1]], dea1: numpy.ndarray[numpy.float64[3, 1]], deb0: numpy.ndarray[numpy.float64[3, 1]], deb1: numpy.ndarray[numpy.float64[3, 1]], coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[3, 1]]

Compute the relative velocity of the edges.

Parameters:
dea0: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the first endpoint of the first edge

dea1: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the second endpoint of the first edge

deb0: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the first endpoint of the second edge

deb1: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the second endpoint of the second edge

coords: numpy.ndarray[numpy.float64[2, 1]]

Two parametric coordinates of the closest points on the edges

Returns:

The relative velocity of the edges

ipctk.point_triangle_relative_velocity(dp: numpy.ndarray[numpy.float64[3, 1]], dt0: numpy.ndarray[numpy.float64[3, 1]], dt1: numpy.ndarray[numpy.float64[3, 1]], dt2: numpy.ndarray[numpy.float64[3, 1]], coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[3, 1]]

Compute the relative velocity of the point to the triangle.

Parameters:
dp: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the point

dt0: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the first vertex of the triangle

dt1: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the second vertex of the triangle

dt2: numpy.ndarray[numpy.float64[3, 1]]

Velocity of the third vertex of the triangle

coords: numpy.ndarray[numpy.float64[2, 1]]

Baricentric coordinates of the closest point on the triangle

Returns:

The relative velocity of the point to the triangle

Relative Velocity as Multiplier Matricies

ipctk.point_point_relative_velocity_matrix(dim: int) numpy.ndarray[numpy.float64[m, n]]

Compute the relative velocity premultiplier matrix

Parameters:
dim: int

Dimension (2 or 3)

Returns:

The relative velocity premultiplier matrix

ipctk.point_edge_relative_velocity_matrix(dim: int, alpha: float) numpy.ndarray[numpy.float64[m, n]]
ipctk.edge_edge_relative_velocity_matrix(dim: int, coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]]
ipctk.point_triangle_relative_velocity_matrix(dim: int, coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]]

Relative Velocity Matrix Jacobians

ipctk.point_point_relative_velocity_matrix_jacobian(dim: int) numpy.ndarray[numpy.float64[m, n]]

Compute the jacobian of the relative velocity premultiplier matrix

Parameters:
dim: int

Dimension (2 or 3)

Returns:

The jacobian of the relative velocity premultiplier matrix

ipctk.point_edge_relative_velocity_matrix_jacobian(dim: int, alpha: float) numpy.ndarray[numpy.float64[m, n]]
ipctk.edge_edge_relative_velocity_matrix_jacobian(dim: int, coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]]
ipctk.point_triangle_relative_velocity_matrix_jacobian(dim: int, coords: numpy.ndarray[numpy.float64[2, 1]]) numpy.ndarray[numpy.float64[m, n]]