Continuous Collision Detection¶
- ipctk.is_step_collision_free(mesh: ipctk.CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], broad_phase_method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>, min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) bool ¶
Determine if the step is collision free.
Note
Assumes the trajectory is linear.
- Parameters:¶
- mesh
The collision mesh.
- vertices_t0
Surface vertex vertices at start as rows of a matrix.
- vertices_t1
Surface vertex vertices at end as rows of a matrix.
- broad_phase_method
The broad phase method to use.
- min_distance
The minimum distance allowable between any two elements.
- tolerance
The tolerance for the CCD algorithm.
- max_iterations
The maximum number of iterations for the CCD algorithm.
- Returns:¶
True if <b>any</b> collisions occur.
- ipctk.compute_collision_free_stepsize(mesh: ipctk.CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], broad_phase_method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>, min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) float ¶
Computes a maximal step size that is collision free.
Note
Assumes the trajectory is linear.
- Parameters:¶
- mesh
The collision mesh.
- vertices_t0
Vertex vertices at start as rows of a matrix. Assumes vertices_t0 is intersection free.
- vertices_t1
Surface vertex vertices at end as rows of a matrix.
- broad_phase_method
The broad phase method to use.
- min_distance
The minimum distance allowable between any two elements.
- tolerance
The tolerance for the CCD algorithm.
- max_iterations
The maximum number of iterations for the CCD algorithm.
- Returns:¶
A step-size \(\in [0, 1]\) that is collision free. A value of 1.0 if a full step and 0.0 is no step.
Individual CCD Functions¶
-
ipctk.point_point_ccd(p0_t0: numpy.ndarray[numpy.float64[m, 1]], p1_t0: numpy.ndarray[numpy.float64[m, 1]], p0_t1: numpy.ndarray[numpy.float64[m, 1]], p1_t1: numpy.ndarray[numpy.float64[m, 1]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Computes the time of impact between two points using continuous collision detection.
- Parameters:¶
- p0_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the first point.
- p1_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the second point.
- p0_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the first point.
- p1_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the second point.
- min_distance: float =
0.0
¶ The minimum distance between the points.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- tolerance: float =
1e-06
¶ The error tolerance for the time of impact.
- max_iterations: int =
10000000
¶ The maximum number of iterations to perform.
- conservative_rescaling: float =
0.8
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the two points.
- Return type:¶
Tuple of
-
ipctk.point_edge_ccd(p_t0: numpy.ndarray[numpy.float64[m, 1]], e0_t0: numpy.ndarray[numpy.float64[m, 1]], e1_t0: numpy.ndarray[numpy.float64[m, 1]], p_t1: numpy.ndarray[numpy.float64[m, 1]], e0_t1: numpy.ndarray[numpy.float64[m, 1]], e1_t1: numpy.ndarray[numpy.float64[m, 1]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Computes the time of impact between a point and an edge using continuous collision detection.
- Parameters:¶
- p_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the point.
- e0_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the first endpoint of the edge.
- e1_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the second endpoint of the edge.
- p_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the point.
- e0_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the first endpoint of the edge.
- e1_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the second endpoint of the edge.
- min_distance: float =
0.0
¶ The minimum distance between the objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- tolerance: float =
1e-06
¶ The error tolerance for the time of impact.
- max_iterations: int =
10000000
¶ The maximum number of iterations to perform.
- conservative_rescaling: float =
0.8
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the point and the edge.
- Return type:¶
Tuple of
-
ipctk.edge_edge_ccd(ea0_t0: numpy.ndarray[numpy.float64[3, 1]], ea1_t0: numpy.ndarray[numpy.float64[3, 1]], eb0_t0: numpy.ndarray[numpy.float64[3, 1]], eb1_t0: numpy.ndarray[numpy.float64[3, 1]], ea0_t1: numpy.ndarray[numpy.float64[3, 1]], ea1_t1: numpy.ndarray[numpy.float64[3, 1]], eb0_t1: numpy.ndarray[numpy.float64[3, 1]], eb1_t1: numpy.ndarray[numpy.float64[3, 1]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Computes the time of impact between two edges in 3D using continuous collision detection.
- Parameters:¶
- ea0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first endpoint of the first edge.
- ea1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second endpoint of the first edge.
- eb0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first endpoint of the second edge.
- eb1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second endpoint of the second edge.
- ea0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first endpoint of the first edge.
- ea1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second endpoint of the first edge.
- eb0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first endpoint of the second edge.
- eb1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second endpoint of the second edge.
- min_distance: float =
0.0
¶ The minimum distance between the objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- tolerance: float =
1e-06
¶ The error tolerance for the time of impact.
- max_iterations: int =
10000000
¶ The maximum number of iterations to perform.
- conservative_rescaling: float =
0.8
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the two edges.
- Return type:¶
Tuple of
-
ipctk.point_triangle_ccd(p_t0: numpy.ndarray[numpy.float64[3, 1]], t0_t0: numpy.ndarray[numpy.float64[3, 1]], t1_t0: numpy.ndarray[numpy.float64[3, 1]], t2_t0: numpy.ndarray[numpy.float64[3, 1]], p_t1: numpy.ndarray[numpy.float64[3, 1]], t0_t1: numpy.ndarray[numpy.float64[3, 1]], t1_t1: numpy.ndarray[numpy.float64[3, 1]], t2_t1: numpy.ndarray[numpy.float64[3, 1]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Computes the time of impact between a point and a triangle in 3D using continuous collision detection.
- Parameters:¶
- p_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the point.
- t0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first vertex of the triangle.
- t1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second vertex of the triangle.
- t2_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the third vertex of the triangle.
- p_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the point.
- t0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first vertex of the triangle.
- t1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second vertex of the triangle.
- t2_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the third vertex of the triangle.
- min_distance: float =
0.0
¶ The minimum distance between the objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- tolerance: float =
1e-06
¶ The error tolerance for the time of impact.
- max_iterations: int =
10000000
¶ The maximum number of iterations to perform.
- conservative_rescaling: float =
0.8
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the point and the triangle.
- Return type:¶
Tuple of
Generic Interface¶
- ipctk.ccd_strategy(ccd: collections.abc.Callable[[int, float, bool, float], bool], max_iterations: int, min_distance: float, initial_distance: float, conservative_rescaling: float) tuple[bool, float] ¶
Perform the CCD strategy outlined by Li et al. [2020].
- Parameters:¶
- ccd: collections.abc.Callable[[int, float, bool, float], bool]¶
The continuous collision detection function.
- max_iterations: int¶
The maximum number of iterations to perform.
- min_distance: float¶
The minimum distance between the objects.
- initial_distance: float¶
The initial distance between the objects.
- conservative_rescaling: float¶
The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. Output time of impact.
- Return type:¶
Tuple of
Additive CCD¶
-
ipctk.additive_ccd.point_point_ccd(p0_t0: numpy.ndarray[numpy.float64[m, 1]], p1_t0: numpy.ndarray[numpy.float64[m, 1]], p0_t1: numpy.ndarray[numpy.float64[m, 1]], p1_t1: numpy.ndarray[numpy.float64[m, 1]], min_distance: float =
0.0
, tmax: float =1.0
, conservative_rescaling: float =0.9
) tuple[bool, float] ¶ Computes the time of impact between two points using continuous collision detection.
- Parameters:¶
- p0_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the first point.
- p1_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the second point.
- p0_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the first point.
- p1_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the second point.
- min_distance: float =
0.0
¶ The minimum distance between two objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- conservative_rescaling: float =
0.9
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the two points.
- Return type:¶
Tuple of
-
ipctk.additive_ccd.point_edge_ccd(p_t0: numpy.ndarray[numpy.float64[m, 1]], e0_t0: numpy.ndarray[numpy.float64[m, 1]], e1_t0: numpy.ndarray[numpy.float64[m, 1]], p_t1: numpy.ndarray[numpy.float64[m, 1]], e0_t1: numpy.ndarray[numpy.float64[m, 1]], e1_t1: numpy.ndarray[numpy.float64[m, 1]], min_distance: float =
0.0
, tmax: float =1.0
, conservative_rescaling: float =0.9
) tuple[bool, float] ¶ Computes the time of impact between a point and an edge using continuous collision detection.
- Parameters:¶
- p_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the point.
- e0_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the first endpoint of the edge.
- e1_t0: numpy.ndarray[numpy.float64[m, 1]]¶
The initial position of the second endpoint of the edge.
- p_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the point.
- e0_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the first endpoint of the edge.
- e1_t1: numpy.ndarray[numpy.float64[m, 1]]¶
The final position of the second endpoint of the edge.
- min_distance: float =
0.0
¶ The minimum distance between two objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- conservative_rescaling: float =
0.9
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the point and the edge.
- Return type:¶
Tuple of
-
ipctk.additive_ccd.edge_edge_ccd(ea0_t0: numpy.ndarray[numpy.float64[3, 1]], ea1_t0: numpy.ndarray[numpy.float64[3, 1]], eb0_t0: numpy.ndarray[numpy.float64[3, 1]], eb1_t0: numpy.ndarray[numpy.float64[3, 1]], ea0_t1: numpy.ndarray[numpy.float64[3, 1]], ea1_t1: numpy.ndarray[numpy.float64[3, 1]], eb0_t1: numpy.ndarray[numpy.float64[3, 1]], eb1_t1: numpy.ndarray[numpy.float64[3, 1]], min_distance: float =
0.0
, tmax: float =1.0
, conservative_rescaling: float =0.9
) tuple[bool, float] ¶ Computes the time of impact between two edges using continuous collision detection.
- Parameters:¶
- ea0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first endpoint of the first edge.
- ea1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second endpoint of the first edge.
- eb0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first endpoint of the second edge.
- eb1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second endpoint of the second edge.
- ea0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first endpoint of the first edge.
- ea1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second endpoint of the first edge.
- eb0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first endpoint of the second edge.
- eb1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second endpoint of the second edge.
- min_distance: float =
0.0
¶ The minimum distance between two objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- conservative_rescaling: float =
0.9
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the two edges.
- Return type:¶
Tuple of
-
ipctk.additive_ccd.point_triangle_ccd(p_t0: numpy.ndarray[numpy.float64[3, 1]], t0_t0: numpy.ndarray[numpy.float64[3, 1]], t1_t0: numpy.ndarray[numpy.float64[3, 1]], t2_t0: numpy.ndarray[numpy.float64[3, 1]], p_t1: numpy.ndarray[numpy.float64[3, 1]], t0_t1: numpy.ndarray[numpy.float64[3, 1]], t1_t1: numpy.ndarray[numpy.float64[3, 1]], t2_t1: numpy.ndarray[numpy.float64[3, 1]], min_distance: float =
0.0
, tmax: float =1.0
, conservative_rescaling: float =0.9
) tuple[bool, float] ¶ Computes the time of impact between a point and a triangle using continuous collision detection.
- Parameters:¶
- p_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the point.
- t0_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the first vertex of the triangle.
- t1_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the second vertex of the triangle.
- t2_t0: numpy.ndarray[numpy.float64[3, 1]]¶
The initial position of the third vertex of the triangle.
- p_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the point.
- t0_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the first vertex of the triangle.
- t1_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the second vertex of the triangle.
- t2_t1: numpy.ndarray[numpy.float64[3, 1]]¶
The final position of the third vertex of the triangle.
- min_distance: float =
0.0
¶ The minimum distance between two objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- conservative_rescaling: float =
0.9
¶ The conservative rescaling of the time of impact.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the point and the triangle.
- Return type:¶
Tuple of
Generic Interface¶
-
ipctk.additive_ccd.additive_ccd(x: numpy.ndarray[numpy.float64[m, 1]], dx: numpy.ndarray[numpy.float64[m, 1]], distance_squared: collections.abc.Callable[[numpy.ndarray[numpy.float64[m, 1]]], float], max_disp_mag: float, min_distance: float =
0.0
, tmax: float =1.0
, conservative_rescaling: float =0.9
) tuple[bool, float] ¶ Computes the time of impact between two objects using additive continuous collision detection.
- Parameters:¶
- distance_squared: collections.abc.Callable[[numpy.ndarray[numpy.float64[m, 1]]], float]¶
A function that computes the squared distance between the two objects at a given time.
- min_distance: float =
0.0
¶ The minimum distance between the objects.
- tmax: float =
1.0
¶ The maximum time to check for collisions.
- conservative_rescaling: float =
0.9
¶ The amount to rescale the objects by to ensure conservative advancement.
- Returns:¶
True if a collision was detected, false otherwise. The time of impact between the two objects.
- Return type:¶
Tuple of
Nonlinear CCD¶
- class ipctk.NonlinearTrajectory¶
Bases:
pybind11_object
Public Methods:
__init__
(self)__call__
(self, t)Compute the point's position at time t
max_distance_from_linear
(self, t0, t1)Compute the maximum distance from the nonlinear trajectory to a linearized trajectory
Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __call__(self, t: float) numpy.ndarray[numpy.float64[m, 1]] ¶
Compute the point’s position at time t
-
__module__ =
'ipctk'
¶
-
__annotations__ =
- class ipctk.IntervalNonlinearTrajectory¶
Bases:
NonlinearTrajectory
Public Methods:
__init__
(self)__call__
(*args, **kwargs)Overloaded function.
max_distance_from_linear
(self, t0, t1)Compute the maximum distance from the nonlinear trajectory to a linearized trajectory
Inherited from
NonlinearTrajectory
__init__
(self)__call__
(self, t)Compute the point's position at time t
max_distance_from_linear
(self, t0, t1)Compute the maximum distance from the nonlinear trajectory to a linearized trajectory
Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __call__(*args, **kwargs)¶
Overloaded function.
__call__(self: ipctk.IntervalNonlinearTrajectory, t: float) -> numpy.ndarray[numpy.float64[m, 1]]
Compute the point’s position at time t
__call__(self: ipctk.IntervalNonlinearTrajectory, t: filib::Interval) -> numpy.ndarray[filib::Interval[m, 1]]
Compute the point’s position over a time interval t
-
__module__ =
'ipctk'
¶
- max_distance_from_linear(self, t0: float, t1: float) float ¶
Compute the maximum distance from the nonlinear trajectory to a linearized trajectory
Note
This uses interval arithmetic to compute the maximum distance. If you know a tighter bound on the maximum distance, it is recommended to override this function.
-
__annotations__ =
-
ipctk.point_point_nonlinear_ccd(p0: ipctk.NonlinearTrajectory, p1: ipctk.NonlinearTrajectory, tmax: float =
1.0
, min_distance: float =0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform nonlinear CCD between two points moving along nonlinear trajectories.
- Parameters:¶
- p0: ipctk.NonlinearTrajectory¶
First point’s trajectory
- p1: ipctk.NonlinearTrajectory¶
Second point’s trajectory
- tmax: float =
1.0
¶ Maximum time to check for collision
- min_distance: float =
0
¶ Minimum separation distance between the two points
- tolerance: float =
1e-06
¶ Tolerance for the linear CCD algorithm
- max_iterations: int =
10000000
¶ Maximum number of iterations for the linear CCD algorithm
- conservative_rescaling: float =
0.8
¶ Conservative rescaling of the time of impact
- Returns:¶
True if the two points collide, false otherwise. Output time of impact
- Return type:¶
Tuple of
-
ipctk.point_edge_nonlinear_ccd(p: ipctk.NonlinearTrajectory, e0: ipctk.NonlinearTrajectory, e1: ipctk.NonlinearTrajectory, tmax: float =
1.0
, min_distance: float =0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform nonlinear CCD between a point and a linear edge moving along nonlinear trajectories.
- Parameters:¶
- p: ipctk.NonlinearTrajectory¶
Point’s trajectory
- e0: ipctk.NonlinearTrajectory¶
Edge’s first endpoint’s trajectory
- e1: ipctk.NonlinearTrajectory¶
Edge’s second endpoint’s trajectory
- tmax: float =
1.0
¶ Maximum time to check for collision
- min_distance: float =
0
¶ Minimum separation distance between the point and the edge
- tolerance: float =
1e-06
¶ Tolerance for the linear CCD algorithm
- max_iterations: int =
10000000
¶ Maximum number of iterations for the linear CCD algorithm
- conservative_rescaling: float =
0.8
¶ Conservative rescaling of the time of impact
- Returns:¶
True if the point and edge collide, false otherwise. Output time of impact
- Return type:¶
Tuple of
-
ipctk.edge_edge_nonlinear_ccd(ea0: ipctk.NonlinearTrajectory, ea1: ipctk.NonlinearTrajectory, eb0: ipctk.NonlinearTrajectory, eb1: ipctk.NonlinearTrajectory, tmax: float =
1.0
, min_distance: float =0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform nonlinear CCD between two linear edges moving along nonlinear trajectories.
- Parameters:¶
- ea0: ipctk.NonlinearTrajectory¶
First edge’s first endpoint’s trajectory
- ea1: ipctk.NonlinearTrajectory¶
First edge’s second endpoint’s trajectory
- eb0: ipctk.NonlinearTrajectory¶
Second edge’s first endpoint’s trajectory
- eb1: ipctk.NonlinearTrajectory¶
Second edge’s second endpoint’s trajectory
- tmax: float =
1.0
¶ Maximum time to check for collision
- min_distance: float =
0
¶ Minimum separation distance between the two edges
- tolerance: float =
1e-06
¶ Tolerance for the linear CCD algorithm
- max_iterations: int =
10000000
¶ Maximum number of iterations for the linear CCD algorithm
- conservative_rescaling: float =
0.8
¶ Conservative rescaling of the time of impact
- Returns:¶
True if the two edges collide, false otherwise. Output time of impact
- Return type:¶
Tuple of
-
ipctk.point_triangle_nonlinear_ccd(p: ipctk.NonlinearTrajectory, t0: ipctk.NonlinearTrajectory, t1: ipctk.NonlinearTrajectory, t2: ipctk.NonlinearTrajectory, tmax: float =
1.0
, min_distance: float =0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform nonlinear CCD between a point and a linear triangle moving along nonlinear trajectories.
- Parameters:¶
- p: ipctk.NonlinearTrajectory¶
Point’s trajectory
- t0: ipctk.NonlinearTrajectory¶
Triangle’s first vertex’s trajectory
- t1: ipctk.NonlinearTrajectory¶
Triangle’s second vertex’s trajectory
- t2: ipctk.NonlinearTrajectory¶
Triangle’s third vertex’s trajectory
- tmax: float =
1.0
¶ Maximum time to check for collision
- min_distance: float =
0
¶ Minimum separation distance between the two edges
- tolerance: float =
1e-06
¶ Tolerance for the linear CCD algorithm
- max_iterations: int =
10000000
¶ Maximum number of iterations for the linear CCD algorithm
- conservative_rescaling: float =
0.8
¶ Conservative rescaling of the time of impact
- Returns:¶
True if the point and triangle collide, false otherwise. Output time of impact
- Return type:¶
Tuple of
Generic Interface¶
-
ipctk.conservative_piecewise_linear_ccd(distance: collections.abc.Callable[[float], float], max_distance_from_linear: collections.abc.Callable[[float, float], float], linear_ccd: collections.abc.Callable[[float, float, float, bool, float], bool], tmax: float =
1.0
, min_distance: float =0
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform conservative piecewise linear CCD of a nonlinear trajectories.
- Parameters:¶
- distance: collections.abc.Callable[[float], float]¶
Return the distance for a given time in [0, 1].
- max_distance_from_linear: collections.abc.Callable[[float, float], float]¶
Return the maximum distance from the linearized trajectory for a given time interval.
- linear_ccd: collections.abc.Callable[[float, float, float, bool, float], bool]¶
Perform linear CCD on a given time interval.
- tmax: float =
1.0
¶ Maximum time to check for collision.
- min_distance: float =
0
¶ Minimum separation distance between the objects.
- conservative_rescaling: float =
0.8
¶ Conservative rescaling of the time of impact.
- Returns:¶
Output time of impact.
- Return type:¶
Tuple of