Broad Phase

class ipctk.BroadPhaseMethod

Bases: pybind11_object

Enumeration of implemented broad phase methods.

Members:

BRUTE_FORCE :

HASH_GRID :

SPATIAL_HASH :

SWEEP_AND_TINIEST_QUEUE :

SWEEP_AND_TINIEST_QUEUE_GPU :

Public Methods:

__init__(self, value)

__repr__(self)

__str__

name(self: handle) -> str

__eq__(self, other)

__ne__(self, other)

__getstate__(self)

__hash__(self)

__int__(self)

__index__(self)

__setstate__(self, state)

Inherited from pybind11_object

Private Data Attributes:

__entries


BRUTE_FORCE = <BroadPhaseMethod.BRUTE_FORCE: 0>
HASH_GRID = <BroadPhaseMethod.HASH_GRID: 1>
SPATIAL_HASH = <BroadPhaseMethod.SPATIAL_HASH: 2>
SWEEP_AND_TINIEST_QUEUE = <BroadPhaseMethod.SWEEP_AND_TINIEST_QUEUE: 3>
SWEEP_AND_TINIEST_QUEUE_GPU = <BroadPhaseMethod.SWEEP_AND_TINIEST_QUEUE_GPU: 4>
__eq__(self, other: object) bool
__getstate__(self) int
__hash__(self) int
__index__(self) int
__init__(self, value: int)
__int__(self) int
__members__ = {'BRUTE_FORCE': <BroadPhaseMethod.BRUTE_FORCE: 0>, 'HASH_GRID': <BroadPhaseMethod.HASH_GRID: 1>, 'SPATIAL_HASH': <BroadPhaseMethod.SPATIAL_HASH: 2>, 'SWEEP_AND_TINIEST_QUEUE': <BroadPhaseMethod.SWEEP_AND_TINIEST_QUEUE: 3>, 'SWEEP_AND_TINIEST_QUEUE_GPU': <BroadPhaseMethod.SWEEP_AND_TINIEST_QUEUE_GPU: 4>}
__module__ = 'ipctk'
__ne__(self, other: object) bool
__repr__(self) str
__setstate__(self, state: int) None
__str__()

name(self: handle) -> str

property name : str
property value : int

Broad Phase

class ipctk.BroadPhase

Bases: pybind11_object

Public Data Attributes:

can_vertices_collide

Function for determining if two vertices can collide.

Public Methods:

__init__(*args, **kwargs)

make_broad_phase(broad_phase_method)

Construct a registered broad phase object.

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

detect_collision_candidates(self, dim)

Detect all collision candidates needed for a given dimensional simulation.

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)
__module__ = 'ipctk'
build(*args, **kwargs)

Overloaded function.

  1. build(self: ipctk.BroadPhase, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for static collision detection.

    Parameters:

    vertices: Vertex positions edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

  2. build(self: ipctk.BroadPhase, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for continuous collision detection.

    Parameters:

    vertices_t0: Starting vertices of the vertices. vertices_t1: Ending vertices of the vertices. edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

property can_vertices_collide : collections.abc.Callable[[int, int], bool]

Function for determining if two vertices can collide.

clear(self) None

Clear any built data.

detect_collision_candidates(self, dim: int) ipc::Candidates

Detect all collision candidates needed for a given dimensional simulation.

Parameters:
dim: int

The dimension of the simulation (i.e., 2 or 3).

detect_edge_edge_candidates(self) list[ipc::EdgeEdgeCandidate]

Find the candidate edge-edge collisions.

Returns:

The candidate edge-edge collisisons.

detect_edge_face_candidates(self) list[ipc::EdgeFaceCandidate]

Find the candidate edge-face intersections.

Returns:

The candidate edge-face intersections.

detect_edge_vertex_candidates(self) list[ipc::EdgeVertexCandidate]

Find the candidate edge-vertex collisisons.

Returns:

The candidate edge-vertex collisisons.

detect_face_vertex_candidates(self) list[ipc::FaceVertexCandidate]

Find the candidate face-vertex collisions.

Returns:

The candidate face-vertex collisisons.

static make_broad_phase(broad_phase_method: ipctk.BroadPhaseMethod) ipctk.BroadPhase

Construct a registered broad phase object.

Parameters:
broad_phase_method: ipctk.BroadPhaseMethod

The broad phase method to use.

Returns:

The constructed broad phase object.

Brute Force

class ipctk.BruteForce

Bases: BroadPhase

Public Data Attributes:

Inherited from BroadPhase

can_vertices_collide

Function for determining if two vertices can collide.

Public Methods:

__init__(self)

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

Inherited from BroadPhase

__init__(*args, **kwargs)

make_broad_phase(broad_phase_method)

Construct a registered broad phase object.

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

detect_collision_candidates(self, dim)

Detect all collision candidates needed for a given dimensional simulation.

Inherited from pybind11_object

__annotations__ = {}
__init__(self)
__module__ = 'ipctk'
detect_edge_edge_candidates(self) list[ipc::EdgeEdgeCandidate]

Find the candidate edge-edge collisions.

detect_edge_face_candidates(self) list[ipc::EdgeFaceCandidate]

Find the candidate edge-face intersections.

detect_edge_vertex_candidates(self) list[ipc::EdgeVertexCandidate]

Find the candidate edge-vertex collisisons.

detect_face_vertex_candidates(self) list[ipc::FaceVertexCandidate]

Find the candidate face-vertex collisions.

Hash Grid

class ipctk.HashGrid

Bases: BroadPhase

Public Data Attributes:

Inherited from BroadPhase

can_vertices_collide

Function for determining if two vertices can collide.

Public Methods:

__init__(self)

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear the hash grid.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

cellSize(self)

gridSize(self)

domainMin(self)

domainMax(self)

Inherited from BroadPhase

__init__(*args, **kwargs)

make_broad_phase(broad_phase_method)

Construct a registered broad phase object.

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

detect_collision_candidates(self, dim)

Detect all collision candidates needed for a given dimensional simulation.

Inherited from pybind11_object

__annotations__ = {}
__init__(self)
__module__ = 'ipctk'
build(*args, **kwargs)

Overloaded function.

  1. build(self: ipctk.HashGrid, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for static collision detection.

    Parameters:

    vertices_t0: Vertex positions edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

  2. build(self: ipctk.HashGrid, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for continuous collision detection.

    Parameters:

    vertices_t0: Starting vertices of the vertices. vertices_t1: Ending vertices of the vertices. edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

cellSize(self) float
clear(self) None

Clear the hash grid.

detect_edge_edge_candidates(self) list[ipc::EdgeEdgeCandidate]

Find the candidate edge-edge collisions.

Returns:

The candidate edge-edge collisisons.

detect_edge_face_candidates(self) list[ipc::EdgeFaceCandidate]

Find the candidate edge-face intersections.

Returns:

The candidate edge-face intersections.

detect_edge_vertex_candidates(self) list[ipc::EdgeVertexCandidate]

Find the candidate edge-vertex collisisons.

Returns:

The candidate edge-vertex collisisons.

detect_face_vertex_candidates(self) list[ipc::FaceVertexCandidate]

Find the candidate face-vertex collisions.

Returns:

The candidate face-vertex collisisons.

domainMax(self) numpy.ndarray[numpy.float64[m, 1]]
domainMin(self) numpy.ndarray[numpy.float64[m, 1]]
gridSize(self) numpy.ndarray[numpy.int32[m, 1]]

Spatial Hash

class ipctk.SpatialHash

Bases: BroadPhase

Public Data Attributes:

leftBottomCorner

rightTopCorner

voxelCount

one_div_voxelSize

voxelCount0x1

edgeStartInd

triStartInd

voxel

pointAndEdgeOccupancy

Inherited from BroadPhase

can_vertices_collide

Function for determining if two vertices can collide.

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

build(*args, **kwargs)

Overloaded function.

clear(self)

queryPointForTriangles(*args, **kwargs)

Overloaded function.

queryPointForPrimitives(*args, **kwargs)

Overloaded function.

queryEdgeForPE(self, e0, e1[, radius])

queryEdgeForEdges(*args, **kwargs)

Overloaded function.

queryEdgeForEdgesWithBBoxCheck(*args, **kwargs)

Overloaded function.

queryTriangleForPoints(*args, **kwargs)

Overloaded function.

queryTriangleForEdges(self, t0, 1]], t1, ...)

queryEdgeForTriangles(*args, **kwargs)

Overloaded function.

queryPointForEdges(self, vi)

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

Inherited from BroadPhase

__init__(*args, **kwargs)

make_broad_phase(broad_phase_method)

Construct a registered broad phase object.

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

detect_collision_candidates(self, dim)

Detect all collision candidates needed for a given dimensional simulation.

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.SpatialHash) -> None

  2. __init__(self: ipctk.SpatialHash, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0, voxelSize: float = -1) -> None

  3. __init__(self: ipctk.SpatialHash, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0, voxelSize: float = -1) -> None

__module__ = 'ipctk'
build(*args, **kwargs)

Overloaded function.

  1. build(self: ipctk.SpatialHash, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

  2. build(self: ipctk.SpatialHash, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

  3. build(self: ipctk.SpatialHash, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float, voxelSize: float) -> None

  4. build(self: ipctk.SpatialHash, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float, voxelSize: float) -> None

clear(self) None
detect_edge_edge_candidates(self) list[ipc::EdgeEdgeCandidate]

Find the candidate edge-edge collisions.

detect_edge_face_candidates(self) list[ipc::EdgeFaceCandidate]

Find the candidate edge-face intersections.

detect_edge_vertex_candidates(self) list[ipc::EdgeVertexCandidate]

Find the candidate edge-vertex collisisons.

detect_face_vertex_candidates(self) list[ipc::FaceVertexCandidate]

Find the candidate face-vertex collisions.

property edgeStartInd : int
property leftBottomCorner : numpy.ndarray[numpy.float64[m, 1]]
property one_div_voxelSize : float
property pointAndEdgeOccupancy : list[list[int]]
queryEdgeForEdges(*args, **kwargs)

Overloaded function.

  1. queryEdgeForEdges(self: ipctk.SpatialHash, ea0: numpy.ndarray[numpy.float64[m, 1]], ea1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0, eai: int = -1) -> List[int]

  2. queryEdgeForEdges(self: ipctk.SpatialHash, ea0_t0: numpy.ndarray[numpy.float64[m, 1]], ea1_t0: numpy.ndarray[numpy.float64[m, 1]], ea0_t1: numpy.ndarray[numpy.float64[m, 1]], ea1_t1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0, eai: int = -1) -> List[int]

  3. queryEdgeForEdges(self: ipctk.SpatialHash, eai: int) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

queryEdgeForEdgesWithBBoxCheck(*args, **kwargs)

Overloaded function.

  1. queryEdgeForEdgesWithBBoxCheck(self: ipctk.SpatialHash, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], ea0: numpy.ndarray[numpy.float64[m, 1]], ea1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0, eai: int = -1) -> List[int]

  2. queryEdgeForEdgesWithBBoxCheck(self: ipctk.SpatialHash, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], eai: int) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

queryEdgeForPE(self, e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) tuple[list[int], list[int]]
queryEdgeForTriangles(*args, **kwargs)

Overloaded function.

  1. queryEdgeForTriangles(self: ipctk.SpatialHash, e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

  2. queryEdgeForTriangles(self: ipctk.SpatialHash, ei: int) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

queryPointForEdges(self, vi: int) tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >
queryPointForPrimitives(*args, **kwargs)

Overloaded function.

  1. queryPointForPrimitives(self: ipctk.SpatialHash, p_t0: numpy.ndarray[numpy.float64[m, 1]], p_t1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> Tuple[tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >, tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >, tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >]

  2. queryPointForPrimitives(self: ipctk.SpatialHash, vi: int) -> Tuple[tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >, tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >, tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >]

queryPointForTriangles(*args, **kwargs)

Overloaded function.

  1. queryPointForTriangles(self: ipctk.SpatialHash, p: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

  2. queryPointForTriangles(self: ipctk.SpatialHash, p_t0: numpy.ndarray[numpy.float64[m, 1]], p_t1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

  3. queryPointForTriangles(self: ipctk.SpatialHash, vi: int) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

queryTriangleForEdges(self, t0: numpy.ndarray[numpy.float64[m, 1]], t1: numpy.ndarray[numpy.float64[m, 1]], t2: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >
queryTriangleForPoints(*args, **kwargs)

Overloaded function.

  1. queryTriangleForPoints(self: ipctk.SpatialHash, t0: numpy.ndarray[numpy.float64[m, 1]], t1: numpy.ndarray[numpy.float64[m, 1]], t2: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

  2. queryTriangleForPoints(self: ipctk.SpatialHash, t0_t0: numpy.ndarray[numpy.float64[m, 1]], t1_t0: numpy.ndarray[numpy.float64[m, 1]], t2_t0: numpy.ndarray[numpy.float64[m, 1]], t0_t1: numpy.ndarray[numpy.float64[m, 1]], t1_t1: numpy.ndarray[numpy.float64[m, 1]], t2_t1: numpy.ndarray[numpy.float64[m, 1]], radius: float = 0) -> tsl::robin_set<int, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<int>, false, tsl::rh::power_of_two_growth_policy<2ul> >

property rightTopCorner : numpy.ndarray[numpy.float64[m, 1]]
property triStartInd : int
property voxel : tsl::robin_map<int, std::vector<int, std::allocator<int> >, absl::lts_20230125::hash_internal::Hash<int>, std::equal_to<int>, std::allocator<std::pair<int, std::vector<int, std::allocator<int> > > >, false, tsl::rh::power_of_two_growth_policy<2ul> >
property voxelCount : numpy.ndarray[numpy.int32[m, 1]]
property voxelCount0x1 : int

Sweep and Tiniest Queue

class ipctk.SweepAndTiniestQueue

Bases: CopyMeshBroadPhase

Public Data Attributes:

Inherited from BroadPhase

can_vertices_collide

Function for determining if two vertices can collide.

Public Methods:

__init__(self)

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

Inherited from CopyMeshBroadPhase

__init__(*args, **kwargs)

Inherited from BroadPhase

__init__(*args, **kwargs)

make_broad_phase(broad_phase_method)

Construct a registered broad phase object.

build(*args, **kwargs)

Overloaded function.

clear(self)

Clear any built data.

detect_edge_vertex_candidates(self)

Find the candidate edge-vertex collisisons.

detect_edge_edge_candidates(self)

Find the candidate edge-edge collisions.

detect_face_vertex_candidates(self)

Find the candidate face-vertex collisions.

detect_edge_face_candidates(self)

Find the candidate edge-face intersections.

detect_collision_candidates(self, dim)

Detect all collision candidates needed for a given dimensional simulation.

Inherited from pybind11_object

__annotations__ = {}
__init__(self)
__module__ = 'ipctk'
build(*args, **kwargs)

Overloaded function.

  1. build(self: ipctk.SweepAndTiniestQueue, vertices: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for static collision detection.

    Parameters:

    vertices: Vertex positions edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

  2. build(self: ipctk.SweepAndTiniestQueue, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], inflation_radius: float = 0) -> None

    Build the broad phase for continuous collision detection.

    Parameters:

    vertices_t0: Starting vertex positions vertices_t1: Ending vertex positions edges: Collision mesh edges faces: Collision mesh faces inflation_radius: Radius of inflation around all elements.

clear(self) None

Clear any built data.

detect_edge_edge_candidates(self) list[ipc::EdgeEdgeCandidate]

Find the candidate edge-edge collisions.

Returns:

The candidate edge-edge collisisons.

detect_edge_face_candidates(self) list[ipc::EdgeFaceCandidate]

Find the candidate edge-face intersections.

Returns:

The candidate edge-face intersections.

detect_edge_vertex_candidates(self) list[ipc::EdgeVertexCandidate]

Find the candidate edge-vertex collisisons.

Returns:

The candidate edge-vertex collisisons.

detect_face_vertex_candidates(self) list[ipc::FaceVertexCandidate]

Find the candidate face-vertex collisions.

Returns:

The candidate face-vertex collisisons.

AABB

class ipctk.AABB

Bases: pybind11_object

Public Data Attributes:

min

Minimum corner of the AABB.

max

Maximum corner of the AABB.

vertex_ids

Vertex IDs attached to the AABB.

Public Methods:

__init__(*args, **kwargs)

Overloaded function.

from_point(*args, **kwargs)

Overloaded function.

intersects(self, other)

Check if another AABB intersects with this one.

conservative_inflation(min, max, ...)

Compute a conservative inflation of the AABB.

Inherited from pybind11_object

__annotations__ = {}
__init__(*args, **kwargs)

Overloaded function.

  1. __init__(self: ipctk.AABB) -> None

  2. __init__(self: ipctk.AABB, min: numpy.ndarray[numpy.float64[m, 1]], max: numpy.ndarray[numpy.float64[m, 1]]) -> None

  3. __init__(self: ipctk.AABB, aabb1: ipctk.AABB, aabb2: ipctk.AABB) -> None

  4. __init__(self: ipctk.AABB, aabb1: ipctk.AABB, aabb2: ipctk.AABB, aabb3: ipctk.AABB) -> None

__module__ = 'ipctk'
static conservative_inflation(min: numpy.ndarray[numpy.float64[m, 1]], max: numpy.ndarray[numpy.float64[m, 1]], inflation_radius: float) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]]

Compute a conservative inflation of the AABB.

static from_point(*args, **kwargs)

Overloaded function.

  1. from_point(p: numpy.ndarray[numpy.float64[m, 1]], inflation_radius: float = 0) -> ipctk.AABB

    Compute a AABB for a static point.

    Parameters:

    p: The point’s position. inflation_radius: Radius of a sphere around the point which the AABB encloses.

    Returns:

    The constructed AABB.

  2. from_point(p_t0: numpy.ndarray[numpy.float64[m, 1]], p_t1: numpy.ndarray[numpy.float64[m, 1]], inflation_radius: float = 0) -> ipctk.AABB

    Compute a AABB for a moving point (i.e. temporal edge).

    Parameters:

    p_t0: The point’s position at time t=0. p_t1: The point’s position at time t=1. inflation_radius: Radius of a capsule around the temporal edge which the AABB encloses.

    Returns:

    The constructed AABB.

intersects(self, other: ipctk.AABB) bool

Check if another AABB intersects with this one.

Parameters:
other: ipctk.AABB

The other AABB.

Returns:

If the two AABBs intersect.

property max : numpy.ndarray[numpy.float64[m, 1]]

Maximum corner of the AABB.

property min : numpy.ndarray[numpy.float64[m, 1]]

Minimum corner of the AABB.

property vertex_ids : list[int[3]]

Vertex IDs attached to the AABB.