Candidates¶
Candidates¶
- class ipctk.Candidates¶
Bases:
pybind11_object
Public Data Attributes:
Public Methods:
__init__
(self)build
(*args, **kwargs)Overloaded function.
__len__
(self)empty
(self)clear
(self)__getitem__
(self, arg0)is_step_collision_free
(self, mesh, ...)Determine if the step is collision free from the set of candidates.
compute_collision_free_stepsize
(self, mesh, ...)Computes a maximal step size that is collision free using the set of collision candidates.
Computes a conservative bound on the largest-feasible step size for surface primitives not in contact.
compute_cfl_stepsize
(self, mesh, ...)Computes a CFL-inspired CCD maximum step step size.
save_obj
(self, filename, vertices, edges, faces)Inherited from
pybind11_object
-
__annotations__ =
{}
¶
-
__module__ =
'ipctk'
¶
- build(*args, **kwargs)¶
Overloaded function.
build(self: ipctk.Candidates, mesh: ipc::CollisionMesh, vertices: numpy.ndarray[numpy.float64[m, n]], inflation_radius: float = 0, broad_phase_method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>) -> None
Initialize the set of discrete collision detection candidates.
- Parameters:
mesh: The surface of the contact mesh. vertices: Surface vertex positions (rowwise). inflation_radius: Amount to inflate the bounding boxes. broad_phase_method: Broad phase method to use.
build(self: ipctk.Candidates, mesh: ipc::CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], inflation_radius: float = 0, broad_phase_method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>) -> None
Initialize the set of continuous collision detection candidates.
- Note:
Assumes the trajectory is linear.
- Parameters:
mesh: The surface of the contact mesh. vertices_t0: Surface vertex starting positions (rowwise). vertices_t1: Surface vertex ending positions (rowwise). inflation_radius: Amount to inflate the bounding boxes. broad_phase_method: Broad phase method to use.
- compute_cfl_stepsize(self: ipctk.Candidates, mesh: ipc::CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], dhat: float, broad_phase_method: ipctk.BroadPhaseMethod = <BroadPhaseMethod.HASH_GRID: 1>, min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) float ¶
Computes a CFL-inspired CCD maximum step step size.
- Parameters:¶
- mesh
The collision mesh.
- vertices_t0
Surface vertex starting positions (rowwise).
- vertices_t1
Surface vertex ending positions (rowwise).
- dhat
Barrier activation distance.
- min_distance
The minimum distance allowable between any two elements.
- tolerance
The tolerance for the CCD algorithm.
- max_iterations
The maximum number of iterations for the CCD algorithm.
- compute_collision_free_stepsize(self: ipctk.Candidates, mesh: ipc::CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) float ¶
Computes a maximal step size that is collision free using the set of collision candidates.
Note
Assumes the trajectory is linear.
- Parameters:¶
- mesh
The collision mesh.
- vertices_t0
Surface vertex starting positions (rowwise). Assumed to be intersection free.
- vertices_t1
Surface vertex ending positions (rowwise).
- min_distance
The minimum distance allowable between any two elements.
- tolerance
The tolerance for the CCD algorithm.
- max_iterations
The maximum number of iterations for the CCD algorithm.
- Returns:¶
A step-size $in [0, 1]$ that is collision free. A value of 1.0 if a full step and 0.0 is no step.
- compute_noncandidate_conservative_stepsize(self: ipctk.Candidates, mesh: ipc::CollisionMesh, displacements: numpy.ndarray[numpy.float64[m, n]], dhat: float) float ¶
Computes a conservative bound on the largest-feasible step size for surface primitives not in contact.
- Parameters:¶
- mesh
The collision mesh.
- displacements
Surface vertex displacements (rowwise).
- dhat
Barrier activation distance.
- property ee_candidates : list[ipc::EdgeEdgeCandidate]¶
- property ev_candidates : list[ipc::EdgeVertexCandidate]¶
- property fv_candidates : list[ipc::FaceVertexCandidate]¶
- is_step_collision_free(self: ipctk.Candidates, mesh: ipc::CollisionMesh, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], min_distance: float = 0.0, tolerance: float = 1e-06, max_iterations: int = 10000000) bool ¶
Determine if the step is collision free from the set of candidates.
Note
Assumes the trajectory is linear.
- Parameters:¶
- mesh
The collision mesh.
- vertices_t0
Surface vertex starting positions (rowwise).
- vertices_t1
Surface vertex ending positions (rowwise).
- min_distance
The minimum distance allowable between any two elements.
- tolerance
The tolerance for the CCD algorithm.
- max_iterations
The maximum number of iterations for the CCD algorithm.
- Returns:¶
True if <b>any</b> collisions occur.
-
__annotations__ =
Collision Stencil¶
Error
This autoclass
is not working. I don’t know why. I have to investigate.
Continuous Collision Candidate¶
- class ipctk.ContinuousCollisionCandidate¶
Bases:
pybind11_object
Public Methods:
__init__
(*args, **kwargs)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)Inherited from
pybind11_object
-
__annotations__ =
{}
¶
-
__module__ =
'ipctk'
¶
-
ccd(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform narrow-phase CCD on the candidate.
- Parameters:¶
- vertices_t0: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the start of the time step.
- vertices_t1: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the end of the time step.
- edges: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh edges as rows of indicies into vertices.
- faces: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh triangular faces as rows of indicies into vertices.
- min_distance: float =
0.0
¶ Minimum separation distance between primitives.
- tmax: float =
1.0
¶ Maximum time (normalized) to look for collisions. Should be in [0, 1].
- tolerance: float =
1e-06
¶ CCD tolerance used by Tight-Inclusion CCD.
- max_iterations: int =
10000000
¶ Maximum iterations used by Tight-Inclusion CCD.
- conservative_rescaling: float =
0.8
¶ Conservative rescaling value used to avoid taking steps exactly to impact.
- Returns:¶
If the candidate had a collision over the time interval. Computed time of impact (normalized).
- Return type:¶
Tuple of
- print_ccd_query(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]]) None ¶
-
__annotations__ =
Vertex-Vertex Candidate¶
- class ipctk.VertexVertexCandidate¶
Bases:
CollisionStencil
Public Data Attributes:
ID of the first vertex
ID of the second vertex
Public Methods:
__init__
(self, vertex0_id, vertex1_id)__str__
(self)__repr__
(self)num_vertices
(self)vertex_ids
(self, edges, faces)Get the indices of the vertices
__eq__
(self, other)__ne__
(self, other)__lt__
(self, other)Compare EdgeVertexCandidates for sorting.
Inherited from
CollisionStencil
__init__
(*args, **kwargs)num_vertices
(self)Get the number of vertices in the contact stencil.
vertex_ids
(self, edges, faces)Get the vertex IDs of the contact stencil.
vertices
(self, vertices, edges, faces)Get the vertex attributes of the contact stencil.
dof
(self, X, edges, faces)Select this stencil's DOF from the full matrix of DOF.
compute_distance
(self, vertices, edges, faces)Compute the distance of the stencil.
compute_distance_gradient
(self, vertices, ...)Compute the distance gradient of the stencil w.r.t.
compute_distance_hessian
(self, vertices, ...)Compute the distance Hessian of the stencil w.r.t.
Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __eq__(self, other: ipctk.VertexVertexCandidate) bool ¶
-
__hash__ =
None
¶
- __init__(self, vertex0_id: int, vertex1_id: int)¶
- __lt__(self, other: ipctk.VertexVertexCandidate) bool ¶
Compare EdgeVertexCandidates for sorting.
-
__module__ =
'ipctk'
¶
- __ne__(self, other: ipctk.VertexVertexCandidate) bool ¶
- property vertex0_id : int¶
ID of the first vertex
- property vertex1_id : int¶
ID of the second vertex
-
__annotations__ =
Edge-Vertex Candidate¶
- class ipctk.EdgeVertexCandidate¶
Bases:
CollisionStencil
,ContinuousCollisionCandidate
Public Methods:
__init__
(self, edge_id, vertex_id)__str__
(self)__repr__
(self)num_vertices
(self)vertex_ids
(self, edges, faces)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)__eq__
(self, other)__ne__
(self, other)__lt__
(self, other)Compare EdgeVertexCandidates for sorting.
Inherited from
CollisionStencil
__init__
(*args, **kwargs)num_vertices
(self)Get the number of vertices in the contact stencil.
vertex_ids
(self, edges, faces)Get the vertex IDs of the contact stencil.
vertices
(self, vertices, edges, faces)Get the vertex attributes of the contact stencil.
dof
(self, X, edges, faces)Select this stencil's DOF from the full matrix of DOF.
compute_distance
(self, vertices, edges, faces)Compute the distance of the stencil.
compute_distance_gradient
(self, vertices, ...)Compute the distance gradient of the stencil w.r.t.
compute_distance_hessian
(self, vertices, ...)Compute the distance Hessian of the stencil w.r.t.
Inherited from
ContinuousCollisionCandidate
__init__
(*args, **kwargs)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __eq__(self, other: ipctk.EdgeVertexCandidate) bool ¶
-
__hash__ =
None
¶
- __lt__(self, other: ipctk.EdgeVertexCandidate) bool ¶
Compare EdgeVertexCandidates for sorting.
-
__module__ =
'ipctk'
¶
- __ne__(self, other: ipctk.EdgeVertexCandidate) bool ¶
-
ccd(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform narrow-phase CCD on the candidate.
- Parameters:¶
- vertices_t0: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the start of the time step.
- vertices_t1: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the end of the time step.
- edges: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh edges as rows of indicies into vertices.
- faces: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh triangular faces as rows of indicies into vertices.
- tmax: float =
1.0
¶ Maximum time (normalized) to look for collisions. Should be in [0, 1].
- tolerance: float =
1e-06
¶ CCD tolerance used by Tight-Inclusion CCD.
- max_iterations: int =
10000000
¶ Maximum iterations used by Tight-Inclusion CCD.
- conservative_rescaling: float =
0.8
¶ Conservative rescaling value used to avoid taking steps exactly to impact.
- Returns:¶
If the candidate had a collision over the time interval. Computed time of impact (normalized).
- Return type:¶
Tuple of
- property edge_id : int¶
ID of the edge
- print_ccd_query(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]]) None ¶
- property vertex_id : int¶
ID of the vertex
-
__annotations__ =
Edge-Edge Candidate¶
- class ipctk.EdgeEdgeCandidate¶
Bases:
CollisionStencil
,ContinuousCollisionCandidate
Public Methods:
__init__
(self, edge0_id, edge1_id)__str__
(self)__repr__
(self)num_vertices
(self)vertex_ids
(self, edges, faces)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)__eq__
(self, other)__ne__
(self, other)__lt__
(self, other)Compare EdgeEdgeCandidates for sorting.
Inherited from
CollisionStencil
__init__
(*args, **kwargs)num_vertices
(self)Get the number of vertices in the contact stencil.
vertex_ids
(self, edges, faces)Get the vertex IDs of the contact stencil.
vertices
(self, vertices, edges, faces)Get the vertex attributes of the contact stencil.
dof
(self, X, edges, faces)Select this stencil's DOF from the full matrix of DOF.
compute_distance
(self, vertices, edges, faces)Compute the distance of the stencil.
compute_distance_gradient
(self, vertices, ...)Compute the distance gradient of the stencil w.r.t.
compute_distance_hessian
(self, vertices, ...)Compute the distance Hessian of the stencil w.r.t.
Inherited from
ContinuousCollisionCandidate
__init__
(*args, **kwargs)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __eq__(self, other: ipctk.EdgeEdgeCandidate) bool ¶
-
__hash__ =
None
¶
- __lt__(self, other: ipctk.EdgeEdgeCandidate) bool ¶
Compare EdgeEdgeCandidates for sorting.
-
__module__ =
'ipctk'
¶
- __ne__(self, other: ipctk.EdgeEdgeCandidate) bool ¶
-
ccd(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶ Perform narrow-phase CCD on the candidate.
- Parameters:¶
- vertices_t0: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the start of the time step.
- vertices_t1: numpy.ndarray[numpy.float64[m, n]]¶
Mesh vertices at the end of the time step.
- edges: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh edges as rows of indicies into vertices.
- faces: numpy.ndarray[numpy.int32[m, n]]¶
Collision mesh triangular faces as rows of indicies into vertices.
- tmax: float =
1.0
¶ Maximum time (normalized) to look for collisions. Should be in [0, 1].
- tolerance: float =
1e-06
¶ CCD tolerance used by Tight-Inclusion CCD.
- max_iterations: int =
10000000
¶ Maximum iterations used by Tight-Inclusion CCD.
- conservative_rescaling: float =
0.8
¶ Conservative rescaling value used to avoid taking steps exactly to impact.
- Returns:¶
If the candidate had a collision over the time interval. Computed time of impact (normalized).
- Return type:¶
Tuple of
- property edge0_id : int¶
ID of the first edge
- property edge1_id : int¶
ID of the second edge
- print_ccd_query(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]]) None ¶
-
__annotations__ =
Edge-Face Candidate¶
- class ipctk.EdgeFaceCandidate¶
Bases:
pybind11_object
Public Methods:
__init__
(self, edge_id, face_id)__str__
(self)__repr__
(self)__eq__
(self, other)__ne__
(self, other)__lt__
(self, other)Compare EdgeFaceCandidate for sorting.
Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __eq__(self, other: ipctk.EdgeFaceCandidate) bool ¶
-
__hash__ =
None
¶
- __lt__(self, other: ipctk.EdgeFaceCandidate) bool ¶
Compare EdgeFaceCandidate for sorting.
-
__module__ =
'ipctk'
¶
- __ne__(self, other: ipctk.EdgeFaceCandidate) bool ¶
- property edge_id : int¶
ID of the edge
- property face_id : int¶
ID of the face
-
__annotations__ =
Face-Vertex Candidate¶
- class ipctk.FaceVertexCandidate¶
Bases:
CollisionStencil
,ContinuousCollisionCandidate
Public Methods:
__init__
(self, face_id, vertex_id)__str__
(self)__repr__
(self)num_vertices
(self)vertex_ids
(self, edges, faces)ccd
(self, vertices_t0, vertices_t1, edges, faces)print_ccd_query
(self, vertices_t0, ...)__eq__
(self, other)__ne__
(self, other)__lt__
(self, other)Compare FaceVertexCandidate for sorting.
Inherited from
CollisionStencil
__init__
(*args, **kwargs)num_vertices
(self)Get the number of vertices in the contact stencil.
vertex_ids
(self, edges, faces)Get the vertex IDs of the contact stencil.
vertices
(self, vertices, edges, faces)Get the vertex attributes of the contact stencil.
dof
(self, X, edges, faces)Select this stencil's DOF from the full matrix of DOF.
compute_distance
(self, vertices, edges, faces)Compute the distance of the stencil.
compute_distance_gradient
(self, vertices, ...)Compute the distance gradient of the stencil w.r.t.
compute_distance_hessian
(self, vertices, ...)Compute the distance Hessian of the stencil w.r.t.
Inherited from
ContinuousCollisionCandidate
__init__
(*args, **kwargs)ccd
(self, vertices_t0, vertices_t1, edges, faces)Perform narrow-phase CCD on the candidate.
print_ccd_query
(self, vertices_t0, ...)Inherited from
pybind11_object
-
__annotations__ =
{}
¶
- __eq__(self, other: ipctk.FaceVertexCandidate) bool ¶
-
__hash__ =
None
¶
- __lt__(self, other: ipctk.FaceVertexCandidate) bool ¶
Compare FaceVertexCandidate for sorting.
-
__module__ =
'ipctk'
¶
- __ne__(self, other: ipctk.FaceVertexCandidate) bool ¶
-
ccd(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]], min_distance: float =
0.0
, tmax: float =1.0
, tolerance: float =1e-06
, max_iterations: int =10000000
, conservative_rescaling: float =0.8
) tuple[bool, float] ¶
- property face_id : int¶
ID of the face
- print_ccd_query(self, vertices_t0: numpy.ndarray[numpy.float64[m, n]], vertices_t1: numpy.ndarray[numpy.float64[m, n]], edges: numpy.ndarray[numpy.int32[m, n]], faces: numpy.ndarray[numpy.int32[m, n]]) None ¶
- property vertex_id : int¶
ID of the vertex
-
__annotations__ =