Distance

Distance Type

class ipctk.PointEdgeDistanceType

Bases: pybind11_object

Members:

P_E0 : point is closest to edge vertex zero

P_E1 : point is closest to edge vertex one

P_E : point is closest to the interior of the edge

AUTO : automatically determine the closest point

AUTO = <PointEdgeDistanceType.AUTO: 3>
P_E = <PointEdgeDistanceType.P_E: 2>
P_E0 = <PointEdgeDistanceType.P_E0: 0>
P_E1 = <PointEdgeDistanceType.P_E1: 1>
__annotations__ = {}
__eq__(self, other: object) bool
__getstate__(self) int
__hash__(self) int
__index__(self) int
__init__(self, value: int)
__int__(self) int
__members__ = {'AUTO': <PointEdgeDistanceType.AUTO: 3>, 'P_E': <PointEdgeDistanceType.P_E: 2>, 'P_E0': <PointEdgeDistanceType.P_E0: 0>, 'P_E1': <PointEdgeDistanceType.P_E1: 1>}
__module__ = 'ipctk'
__ne__(self, other: object) bool
__repr__(self) str
__setstate__(self, state: int) None
__str__(self) str
property name : str
property value : int
class ipctk.EdgeEdgeDistanceType

Bases: pybind11_object

Members:

EA0_EB0 : edges are closest at vertex 0 of edge A and 0 of edge B

EA0_EB1 : edges are closest at vertex 0 of edge A and 1 of edge B

EA1_EB0 : edges are closest at vertex 1 of edge A and 0 of edge B

EA1_EB1 : edges are closest at vertex 1 of edge A and 1 of edge B

EA_EB0 : edges are closest at the interior of edge A and vertex 0 of edge B

EA_EB1 : edges are closest at the interior of edge A and vertex 1 of edge B

EA0_EB : edges are closest at vertex 0 of edge A and the interior of edge B

EA1_EB : edges are closest at vertex 1 of edge A and the interior of edge B

EA_EB : edges are closest at an interior point of edge A and B

AUTO : automatically determine the closest point

AUTO = <EdgeEdgeDistanceType.AUTO: 9>
EA0_EB = <EdgeEdgeDistanceType.EA0_EB: 6>
EA0_EB0 = <EdgeEdgeDistanceType.EA0_EB0: 0>
EA0_EB1 = <EdgeEdgeDistanceType.EA0_EB1: 1>
EA1_EB = <EdgeEdgeDistanceType.EA1_EB: 7>
EA1_EB0 = <EdgeEdgeDistanceType.EA1_EB0: 2>
EA1_EB1 = <EdgeEdgeDistanceType.EA1_EB1: 3>
EA_EB = <EdgeEdgeDistanceType.EA_EB: 8>
EA_EB0 = <EdgeEdgeDistanceType.EA_EB0: 4>
EA_EB1 = <EdgeEdgeDistanceType.EA_EB1: 5>
__annotations__ = {}
__eq__(self, other: object) bool
__getstate__(self) int
__hash__(self) int
__index__(self) int
__init__(self, value: int)
__int__(self) int
__members__ = {'AUTO': <EdgeEdgeDistanceType.AUTO: 9>, 'EA0_EB': <EdgeEdgeDistanceType.EA0_EB: 6>, 'EA0_EB0': <EdgeEdgeDistanceType.EA0_EB0: 0>, 'EA0_EB1': <EdgeEdgeDistanceType.EA0_EB1: 1>, 'EA1_EB': <EdgeEdgeDistanceType.EA1_EB: 7>, 'EA1_EB0': <EdgeEdgeDistanceType.EA1_EB0: 2>, 'EA1_EB1': <EdgeEdgeDistanceType.EA1_EB1: 3>, 'EA_EB': <EdgeEdgeDistanceType.EA_EB: 8>, 'EA_EB0': <EdgeEdgeDistanceType.EA_EB0: 4>, 'EA_EB1': <EdgeEdgeDistanceType.EA_EB1: 5>}
__module__ = 'ipctk'
__ne__(self, other: object) bool
__repr__(self) str
__setstate__(self, state: int) None
__str__(self) str
property name : str
property value : int
class ipctk.PointTriangleDistanceType

Bases: pybind11_object

Members:

P_T0 : point is closest to triangle vertex zero

P_T1 : point is closest to triangle vertex one

P_T2 : point is closest to triangle vertex two

P_E0 : point is closest to triangle edge zero (vertex zero to one)

P_E1 : point is closest to triangle edge one (vertex one to two)

P_E2 : point is closest to triangle edge two (vertex two to zero)

P_T : point is closest to the interior of the triangle

AUTO : automatically determine the closest point

AUTO = <PointTriangleDistanceType.AUTO: 7>
P_E0 = <PointTriangleDistanceType.P_E0: 3>
P_E1 = <PointTriangleDistanceType.P_E1: 4>
P_E2 = <PointTriangleDistanceType.P_E2: 5>
P_T = <PointTriangleDistanceType.P_T: 6>
P_T0 = <PointTriangleDistanceType.P_T0: 0>
P_T1 = <PointTriangleDistanceType.P_T1: 1>
P_T2 = <PointTriangleDistanceType.P_T2: 2>
__annotations__ = {}
__eq__(self, other: object) bool
__getstate__(self) int
__hash__(self) int
__index__(self) int
__init__(self, value: int)
__int__(self) int
__members__ = {'AUTO': <PointTriangleDistanceType.AUTO: 7>, 'P_E0': <PointTriangleDistanceType.P_E0: 3>, 'P_E1': <PointTriangleDistanceType.P_E1: 4>, 'P_E2': <PointTriangleDistanceType.P_E2: 5>, 'P_T': <PointTriangleDistanceType.P_T: 6>, 'P_T0': <PointTriangleDistanceType.P_T0: 0>, 'P_T1': <PointTriangleDistanceType.P_T1: 1>, 'P_T2': <PointTriangleDistanceType.P_T2: 2>}
__module__ = 'ipctk'
__ne__(self, other: object) bool
__repr__(self) str
__setstate__(self, state: int) None
__str__(self) str
property name : str
property value : int
ipctk.point_edge_distance_type(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) ipctk.PointEdgeDistanceType

Determine the closest pair between a point and edge.

Parameters:
p: numpy.ndarray[numpy.float64[m, 1]]

The point.

e0: numpy.ndarray[numpy.float64[m, 1]]

The first vertex of the edge.

e1: numpy.ndarray[numpy.float64[m, 1]]

The second vertex of the edge.

Returns:

The distance type of the point-edge pair.

ipctk.edge_edge_distance_type(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) ipctk.EdgeEdgeDistanceType

Determine the closest pair between two edges.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the first edge.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the first edge.

eb0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the second edge.

eb1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the second edge.

Returns:

The distance type of the edge-edge pair.

ipctk.point_triangle_distance_type(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) ipctk.PointTriangleDistanceType

Determine the closest pair between a point and triangle.

Parameters:
p: numpy.ndarray[numpy.float64[3, 1]]

The point.

t0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the triangle.

t1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the triangle.

t2: numpy.ndarray[numpy.float64[3, 1]]

The third vertex of the triangle.

Returns:

The distance type of the point-triangle pair.

Edge-Edge

ipctk.edge_edge_distance(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.EdgeEdgeDistanceType = <EdgeEdgeDistanceType.AUTO: 9>) float

Compute the distance between a two lines segments in 3D.

Note

The distance is actually squared distance.

Parameters:
ea0

The first vertex of the first edge.

ea1

The second vertex of the first edge.

eb0

The first vertex of the second edge.

eb1

The second vertex of the second edge.

dtype

The point edge distance type to compute.

Returns:

The distance between the two edges.

ipctk.edge_edge_distance_gradient(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.EdgeEdgeDistanceType = <EdgeEdgeDistanceType.AUTO: 9>) numpy.ndarray[numpy.float64[12, 1]]

Compute the gradient of the distance between a two lines segments.

Note

The distance is actually squared distance.

Parameters:
ea0

The first vertex of the first edge.

ea1

The second vertex of the first edge.

eb0

The first vertex of the second edge.

eb1

The second vertex of the second edge.

dtype

The point edge distance type to compute.

Returns:

The gradient of the distance wrt ea0, ea1, eb0, and eb1.

ipctk.edge_edge_distance_hessian(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.EdgeEdgeDistanceType = <EdgeEdgeDistanceType.AUTO: 9>) numpy.ndarray[numpy.float64[12, 12]]

Compute the hessian of the distance between a two lines segments.

Note

The distance is actually squared distance.

Parameters:
ea0

The first vertex of the first edge.

ea1

The second vertex of the first edge.

eb0

The first vertex of the second edge.

eb1

The second vertex of the second edge.

dtype

The point edge distance type to compute.

Returns:

The hessian of the distance wrt ea0, ea1, eb0, and eb1.

Edge-Edge Mollifier

ipctk.edge_edge_mollifier_threshold(ea0_rest: numpy.ndarray[numpy.float64[3, 1]], ea1_rest: numpy.ndarray[numpy.float64[3, 1]], eb0_rest: numpy.ndarray[numpy.float64[3, 1]], eb1_rest: numpy.ndarray[numpy.float64[3, 1]]) float

Compute the threshold of the mollifier edge-edge distance.

This values is computed based on the edges at rest length.

Parameters:
ea0_rest: numpy.ndarray[numpy.float64[3, 1]]

The rest position of the first vertex of the first edge.

ea1_rest: numpy.ndarray[numpy.float64[3, 1]]

The rest position of the second vertex of the first edge.

eb0_rest: numpy.ndarray[numpy.float64[3, 1]]

The rest position of the first vertex of the second edge.

eb1_rest: numpy.ndarray[numpy.float64[3, 1]]

The rest position of the second vertex of the second edge.

Returns:

Threshold for edge-edge mollification.

ipctk.edge_edge_cross_squarednorm(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) float

Compute the squared norm of the edge-edge cross product.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the first edge.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the first edge.

eb0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the second edge.

eb1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the second edge.

Returns:

The squared norm of the edge-edge cross product.

ipctk.edge_edge_cross_squarednorm_gradient(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[12, 1]]

Compute the gradient of the squared norm of the edge cross product.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the first edge.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the first edge.

eb0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the second edge.

eb1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the second edge.

Returns:

The gradient of the squared norm of the edge cross product wrt ea0, ea1, eb0, and eb1.

ipctk.edge_edge_cross_squarednorm_hessian(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[12, 12]]

Compute the hessian of the squared norm of the edge cross product.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the first edge.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the first edge.

eb0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the second edge.

eb1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the second edge.

Returns:

The hessian of the squared norm of the edge cross product wrt ea0, ea1, eb0, and eb1.

ipctk.edge_edge_mollifier(*args, **kwargs)

Overloaded function.

  1. edge_edge_mollifier(x: float, eps_x: float) -> float

    Mollifier function for edge-edge distance.

    Parameters:

    x: Squared norm of the edge-edge cross product. eps_x: Mollifier activation threshold.

    Returns:

    The mollifier coefficient to premultiply the edge-edge distance.

  2. edge_edge_mollifier(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], eps_x: float) -> float

    Compute a mollifier for the edge-edge distance.

    This helps smooth the non-smoothness at close to parallel edges.

    Parameters:

    ea0: The first vertex of the first edge. ea1: The second vertex of the first edge. eb0: The first vertex of the second edge. eb1: The second vertex of the second edge. eps_x: Mollifier activation threshold.

    Returns:

    The mollifier coefficient to premultiply the edge-edge distance.

ipctk.edge_edge_mollifier_gradient(*args, **kwargs)

Overloaded function.

  1. edge_edge_mollifier_gradient(x: float, eps_x: float) -> float

    The gradient of the mollifier function for edge-edge distance.

    Parameters:

    x: Squared norm of the edge-edge cross product. eps_x: Mollifier activation threshold.

    Returns:

    The gradient of the mollifier function for edge-edge distance wrt x.

  2. edge_edge_mollifier_gradient(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], eps_x: float) -> numpy.ndarray[numpy.float64[12, 1]]

    Compute the gradient of the mollifier for the edge-edge distance.

    Parameters:

    ea0: The first vertex of the first edge. ea1: The second vertex of the first edge. eb0: The first vertex of the second edge. eb1: The second vertex of the second edge. eps_x: Mollifier activation threshold.

    Returns:

    The gradient of the mollifier.

ipctk.edge_edge_mollifier_hessian(*args, **kwargs)

Overloaded function.

  1. edge_edge_mollifier_hessian(x: float, eps_x: float) -> float

    The hessian of the mollifier function for edge-edge distance.

    Parameters:

    x: Squared norm of the edge-edge cross product. eps_x: Mollifier activation threshold.

    Returns:

    The hessian of the mollifier function for edge-edge distance wrt x.

  2. edge_edge_mollifier_hessian(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]], eps_x: float) -> numpy.ndarray[numpy.float64[12, 12]]

    Compute the hessian of the mollifier for the edge-edge distance.

    Parameters:

    ea0: The first vertex of the first edge. ea1: The second vertex of the first edge. eb0: The first vertex of the second edge. eb1: The second vertex of the second edge. eps_x: Mollifier activation threshold.

    Returns:

    The hessian of the mollifier.

Line-Line

ipctk.line_line_distance(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) float

Compute the distance between a two infinite lines in 3D.

Note

The distance is actually squared distance.

Warning

If the lines are parallel this function returns a distance of zero.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the first line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the first line.

ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the second line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the second line.

Returns:

The distance between the two lines.

ipctk.line_line_distance_gradient(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[12, 1]]

Compute the gradient of the distance between a two lines in 3D.

Note

The distance is actually squared distance.

Warning

If the lines are parallel this function returns a distance of zero.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the first line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the first line.

ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the second line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the second line.

Returns:

The gradient of the distance wrt ea0, ea1, eb0, and eb1.

ipctk.line_line_distance_hessian(ea0: numpy.ndarray[numpy.float64[3, 1]], ea1: numpy.ndarray[numpy.float64[3, 1]], eb0: numpy.ndarray[numpy.float64[3, 1]], eb1: numpy.ndarray[numpy.float64[3, 1]]) numpy.ndarray[numpy.float64[12, 12]]

Compute the hessian of the distance between a two lines in 3D.

Note

The distance is actually squared distance.

Warning

If the lines are parallel this function returns a distance of zero.

Parameters:
ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the first line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the first line.

ea0: numpy.ndarray[numpy.float64[3, 1]]

The first vertex of the edge defining the second line.

ea1: numpy.ndarray[numpy.float64[3, 1]]

The second vertex of the edge defining the second line.

Returns:

The hessian of the distance wrt ea0, ea1, eb0, and eb1.

Point-Edge

ipctk.point_edge_distance(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]], dtype: ipctk.PointEdgeDistanceType = <PointEdgeDistanceType.AUTO: 3>) float

Compute the distance between a point and edge in 2D or 3D.

Note

The distance is actually squared distance.

Parameters:
p

The point.

e0

The first vertex of the edge.

e1

The second vertex of the edge.

dtype

The point edge distance type to compute.

Returns:

The distance between the point and edge.

ipctk.point_edge_distance_gradient(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]], dtype: ipctk.PointEdgeDistanceType = <PointEdgeDistanceType.AUTO: 3>) numpy.ndarray[numpy.float64[m, 1]]

Compute the gradient of the distance between a point and edge.

Note

The distance is actually squared distance.

Parameters:
p

The point.

e0

The first vertex of the edge.

e1

The second vertex of the edge.

dtype

The point edge distance type to compute.

Returns:

grad The gradient of the distance wrt p, e0, and e1.

ipctk.point_edge_distance_hessian(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]], dtype: ipctk.PointEdgeDistanceType = <PointEdgeDistanceType.AUTO: 3>) numpy.ndarray[numpy.float64[m, n]]

Compute the hessian of the distance between a point and edge.

Note

The distance is actually squared distance.

Parameters:
p

The point.

e0

The first vertex of the edge.

e1

The second vertex of the edge.

dtype

The point edge distance type to compute.

Returns:

hess The hessian of the distance wrt p, e0, and e1.

Point-Line

ipctk.point_line_distance(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) float

Compute the distance between a point and line in 2D or 3D.

Note

The distance is actually squared distance.

Parameters:
p: numpy.ndarray[numpy.float64[m, 1]]

The point.

e0: numpy.ndarray[numpy.float64[m, 1]]

The first vertex of the edge defining the line.

e1: numpy.ndarray[numpy.float64[m, 1]]

The second vertex of the edge defining the line.

Returns:

The distance between the point and line.

ipctk.point_line_distance_gradient(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]

Compute the gradient of the distance between a point and line.

Note

The distance is actually squared distance.

Parameters:
p: numpy.ndarray[numpy.float64[m, 1]]

The point.

e0: numpy.ndarray[numpy.float64[m, 1]]

The first vertex of the edge defining the line.

e1: numpy.ndarray[numpy.float64[m, 1]]

The second vertex of the edge defining the line.

Returns:

The gradient of the distance wrt p, e0, and e1.

ipctk.point_line_distance_hessian(p: numpy.ndarray[numpy.float64[m, 1]], e0: numpy.ndarray[numpy.float64[m, 1]], e1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]

Compute the hessian of the distance between a point and line.

Note

The distance is actually squared distance.

Parameters:
p: numpy.ndarray[numpy.float64[m, 1]]

The point.

e0: numpy.ndarray[numpy.float64[m, 1]]

The first vertex of the edge defining the line.

e1: numpy.ndarray[numpy.float64[m, 1]]

The second vertex of the edge defining the line.

Returns:

The hessian of the distance wrt p, e0, and e1.

Point-Plane

ipctk.point_plane_distance(*args, **kwargs)

Overloaded function.

  1. point_plane_distance(p: numpy.ndarray[numpy.float64[3, 1]], origin: numpy.ndarray[numpy.float64[3, 1]], normal: numpy.ndarray[numpy.float64[3, 1]]) -> float

    Compute the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. origin: The origin of the plane. normal: The normal of the plane.

    Returns:

    The distance between the point and plane.

  2. point_plane_distance(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) -> float

    Compute the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. t0: The first vertex of the triangle. t1: The second vertex of the triangle. t2: The third vertex of the triangle.

    Returns:

    The distance between the point and plane.

ipctk.point_plane_distance_gradient(*args, **kwargs)

Overloaded function.

  1. point_plane_distance_gradient(p: numpy.ndarray[numpy.float64[3, 1]], origin: numpy.ndarray[numpy.float64[3, 1]], normal: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[3, 1]]

    Compute the gradient of the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. origin: The origin of the plane. normal: The normal of the plane.

    Returns:

    The gradient of the distance wrt p.

  2. point_plane_distance_gradient(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[12, 1]]

    Compute the gradient of the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. t0: The first vertex of the triangle. t1: The second vertex of the triangle. t2: The third vertex of the triangle.

    Returns:

    The gradient of the distance wrt p, t0, t1, and t2.

ipctk.point_plane_distance_hessian(*args, **kwargs)

Overloaded function.

  1. point_plane_distance_hessian(p: numpy.ndarray[numpy.float64[3, 1]], origin: numpy.ndarray[numpy.float64[3, 1]], normal: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[3, 3]]

    Compute the hessian of the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. origin: The origin of the plane. normal: The normal of the plane.

    Returns:

    The hessian of the distance wrt p.

  2. point_plane_distance_hessian(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[12, 12]]

    Compute the hessian of the distance between a point and a plane.

    Note:

    The distance is actually squared distance.

    Parameters:

    p: The point. t0: The first vertex of the triangle. t1: The second vertex of the triangle. t2: The third vertex of the triangle.

    Returns:

    The hessian of the distance wrt p, t0, t1, and t2.

Point-Point

ipctk.point_point_distance(p0: numpy.ndarray[numpy.float64[m, 1]], p1: numpy.ndarray[numpy.float64[m, 1]]) float

Compute the distance between two points.

Note

The distance is actually squared distance.

Parameters:
p0: numpy.ndarray[numpy.float64[m, 1]]

The first point.

p1: numpy.ndarray[numpy.float64[m, 1]]

The second point.

Returns:

The distance between p0 and p1.

ipctk.point_point_distance_gradient(p0: numpy.ndarray[numpy.float64[m, 1]], p1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, 1]]

Compute the gradient of the distance between two points.

Note

The distance is actually squared distance.

Parameters:
p0: numpy.ndarray[numpy.float64[m, 1]]

The first point.

p1: numpy.ndarray[numpy.float64[m, 1]]

The second point.

Returns:

The computed gradient.

ipctk.point_point_distance_hessian(p0: numpy.ndarray[numpy.float64[m, 1]], p1: numpy.ndarray[numpy.float64[m, 1]]) numpy.ndarray[numpy.float64[m, n]]

Compute the hessian of the distance between two points.

Note

The distance is actually squared distance.

Parameters:
p0: numpy.ndarray[numpy.float64[m, 1]]

The first point.

p1: numpy.ndarray[numpy.float64[m, 1]]

The second point.

Returns:

The computed hessian.

Point-Triangle

ipctk.point_triangle_distance(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.PointTriangleDistanceType = <PointTriangleDistanceType.AUTO: 7>) float

Compute the distance between a points and a triangle.

Note

The distance is actually squared distance.

Parameters:
p

The point.

t0

The first vertex of the triangle.

t1

The second vertex of the triangle.

t2

The third vertex of the triangle.

dtype

The point-triangle distance type to compute.

Returns:

The distance between the point and triangle.

ipctk.point_triangle_distance_gradient(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.PointTriangleDistanceType = <PointTriangleDistanceType.AUTO: 7>) numpy.ndarray[numpy.float64[12, 1]]

Compute the gradient of the distance between a points and a triangle.

Note

The distance is actually squared distance.

Parameters:
p

The point.

t0

The first vertex of the triangle.

t1

The second vertex of the triangle.

t2

The third vertex of the triangle.

dtype

The point-triangle distance type to compute.

Returns:

The gradient of the distance wrt p, t0, t1, and t2.

ipctk.point_triangle_distance_hessian(p: numpy.ndarray[numpy.float64[3, 1]], t0: numpy.ndarray[numpy.float64[3, 1]], t1: numpy.ndarray[numpy.float64[3, 1]], t2: numpy.ndarray[numpy.float64[3, 1]], dtype: ipctk.PointTriangleDistanceType = <PointTriangleDistanceType.AUTO: 7>) numpy.ndarray[numpy.float64[12, 12]]

Compute the hessian of the distance between a points and a triangle.

Note

The distance is actually squared distance.

Parameters:
p

The point.

t0

The first vertex of the triangle.

t1

The second vertex of the triangle.

t2

The third vertex of the triangle.

dtype

The point-triangle distance type to compute.

Returns:

The hessian of the distance wrt p, t0, t1, and t2.


Last update: Jan 21, 2025