Broad Phase

Broad Phase

class BroadPhase;

Inheritence diagram for ipc::BroadPhase:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BVH" tooltip="ipc::BVH"] "1" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase" fillcolor="#BFBFBF"] "3" [label="ipc::BruteForce" tooltip="ipc::BruteForce"] "4" [label="ipc::HashGrid" tooltip="ipc::HashGrid"] "5" [label="ipc::SpatialHash" tooltip="ipc::SpatialHash"] "6" [label="ipc::SweepAndPrune" tooltip="ipc::SweepAndPrune"] "2" -> "1" [dir=forward tooltip="public-inheritance"] "3" -> "1" [dir=forward tooltip="public-inheritance"] "4" -> "1" [dir=forward tooltip="public-inheritance"] "5" -> "1" [dir=forward tooltip="public-inheritance"] "6" -> "1" [dir=forward tooltip="public-inheritance"] }

Subclassed by ipc::BVH, ipc::BruteForce, ipc::HashGrid, ipc::SpatialHash, ipc::SweepAndPrune

Public Functions

inline virtual ~BroadPhase();
virtual std::string name() const = 0;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

virtual void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
const double inflation_radius = 0);

Build the broad phase for static collision detection.

Parameters:
const Eigen::MatrixXd &vertices

Vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

const double inflation_radius = 0

Radius of inflation around all elements.

virtual void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
const double inflation_radius = 0);

Build the broad phase for continuous collision detection.

Parameters:
const Eigen::MatrixXd &vertices_t0

Starting vertices of the vertices.

const Eigen::MatrixXd &vertices_t1

Ending vertices of the vertices.

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

const double inflation_radius = 0

Radius of inflation around all elements.

virtual void clear();

Clear any built data.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const
   
 = 0;

Find the candidate vertex-vertex collisions.

Parameters:
std::vector<VertexVertexCandidate> &candidates

[out] The candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const
   
 = 0;

Find the candidate edge-vertex collisions.

Parameters:
std::vector<EdgeVertexCandidate> &candidates

[out] The candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const
   
 = 0;

Find the candidate edge-edge collisions.

Parameters:
std::vector<EdgeEdgeCandidate> &candidates

[out] The candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const
   
 = 0;

Find the candidate face-vertex collisions.

Parameters:
std::vector<FaceVertexCandidate> &candidates

[out] The candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const
   
 = 0;

Find the candidate edge-face intersections.

Parameters:
std::vector<EdgeFaceCandidate> &candidates

[out] The candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const
   
 = 0;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

virtual void detect_collision_candidates(
    
int dimCandidatescandidates) const;

Detect all collision candidates needed for a given dimensional simulation.

Parameters:
int dim

The dimension of the simulation (i.e., 2 or 3).

Candidates &candidates

The detected collision candidates.

Public Members

std::function<bool(size_t, size_t)> can_vertices_collide
   
 = default_can_vertices_collide;

Function for determining if two vertices can collide.

Protected Functions

virtual bool can_edge_vertex_collide(size_t eisize_t vi) const;
virtual bool can_edges_collide(size_t eaisize_t ebi) const;
virtual bool can_face_vertex_collide(size_t fisize_t vi) const;
virtual bool can_edge_face_collide(size_t eisize_t fi) const;
virtual bool can_faces_collide(size_t faisize_t fbi) const;

Protected Attributes

std::vector<AABB> vertex_boxes;
std::vector<AABB> edge_boxes;
std::vector<AABB> face_boxes;

Protected Static Functions

static inline bool default_can_vertices_collide(size_tsize_t);

Brute Force

class BruteForce : public ipc::BroadPhase;

Inheritence diagram for ipc::BruteForce:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::BruteForce" tooltip="ipc::BruteForce" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for ipc::BruteForce:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::BruteForce" tooltip="ipc::BruteForce" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Public Functions

BruteForce() = default;
inline virtual std::string name() const override;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const override;

Find the candidate vertex-vertex collisions.

Parameters:
std::vector<VertexVertexCandidate> &candidates

[out] The candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const override;

Find the candidate edge-vertex collisions.

Parameters:
std::vector<EdgeVertexCandidate> &candidates

[out] The candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const override;

Find the candidate edge-edge collisions.

Parameters:
std::vector<EdgeEdgeCandidate> &candidates

[out] The candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const override;

Find the candidate face-vertex collisions.

Parameters:
std::vector<FaceVertexCandidate> &candidates

[out] The candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const override;

Find the candidate edge-face intersections.

Parameters:
std::vector<EdgeFaceCandidate> &candidates

[out] The candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const override;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

Private Functions

template <typename Candidate, bool triangular = false>
void detect_candidates(const std::vector<AABB>boxes0,
    
const std::vector<AABB>boxes1,
    
const std::function<bool(size_t, size_t)>can_collide,
    
std::vector<Candidate>candidates) const;

Detect candidates for collisions between two sets of boxes.

Template Parameters:
typename Candidate

Type of the candidate.

bool triangular = false

Whether to consider (i, j) and (j, i) as the same.

Parameters:
const std::vector<AABB> &boxes0

[in] First set of boxes.

const std::vector<AABB> &boxes1

[in] Second set of boxes.

const std::function<bool(size_t, size_t)> &can_collide

[in] Function to determine if two primitives can collide given their ids.

std::vector<Candidate> &candidates

[out] The candidate collisions.

Hash Grid

class HashGrid : public ipc::BroadPhase;

Inheritence diagram for ipc::HashGrid:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::HashGrid" tooltip="ipc::HashGrid" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for ipc::HashGrid:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::HashGrid" tooltip="ipc::HashGrid" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Public Functions

HashGrid() = default;
inline virtual std::string name() const override;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

virtual void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for static collision detection.

Parameters:
const Eigen::MatrixXd &vertices

Vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

virtual void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for continuous collision detection.

Parameters:
const Eigen::MatrixXd &vertices_t0

Starting vertices of the vertices.

const Eigen::MatrixXd &vertices_t1

Ending vertices of the vertices.

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

inline virtual void clear() override;

Clear the hash grid.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const override;

Find the candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const override;

Find the candidate edge-vertex collisions.

Parameters:
std::vector<EdgeVertexCandidate> &candidates

[out] The candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const override;

Find the candidate edge-edge collisions.

Parameters:
std::vector<EdgeEdgeCandidate> &candidates

[out] The candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const override;

Find the candidate face-vertex collisions.

Parameters:
std::vector<FaceVertexCandidate> &candidates

[out] The candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const override;

Find the candidate edge-face intersections.

Parameters:
std::vector<EdgeFaceCandidate> &candidates

[out] The candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const override;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

inline double cell_size() const;
inline const ArrayMax3igrid_size() const;
inline const ArrayMax3ddomain_min() const;
inline const ArrayMax3ddomain_max() const;

Protected Functions

void resize(const ArrayMax3ddomain_min,
    
const ArrayMax3ddomain_maxdouble cell_size);
void insert_boxes();
void insert_boxes(const std::vector<AABB>boxes,
    
std::vector<HashItem>items) const;
void insert_box(const AABBaabbconst long id,
    
std::vector<HashItem>items) const;

Add an AABB of the extents to the hash grid.

inline long hash(int xint yint z) const;

Create the hash of a cell location.

Protected Attributes

double m_cell_size;
ArrayMax3i m_grid_size;
ArrayMax3d m_domain_min;
ArrayMax3d m_domain_max;
std::vector<HashItem> vertex_items;
std::vector<HashItem> edge_items;
std::vector<HashItem> face_items;

Private Functions

template <typename Candidate>
void detect_candidates(const std::vector<HashItem>items0,
    
const std::vector<HashItem>items1,
    
const std::vector<AABB>boxes0,
    
const std::vector<AABB>boxes1,
    
const std::function<bool(size_t, size_t)>can_collide,
    
std::vector<Candidate>candidates) const;

Find the candidate collisions between two sets of items.

Template Parameters:
typename Candidate

The type of collision candidate.

Parameters:
const std::vector<HashItem> &items0

[in] First set of items.

const std::vector<HashItem> &items1

[in] Second set of items.

const std::vector<AABB> &boxes0

[in] First set’s boxes.

const std::vector<AABB> &boxes1

[in] Second set’s boxes.

const std::function<bool(size_t, size_t)> &can_collide

[in] Function to determine if two items can collide.

std::vector<Candidate> &candidates

[out] The candidate collisions.

template <typename Candidate>
void detect_candidates(const std::vector<HashItem>items,
    
const std::vector<AABB>boxes,
    
const std::function<bool(size_t, size_t)>can_collide,
    
std::vector<Candidate>candidates) const;

Find the candidate collisions among a set of items.

Template Parameters:
typename Candidate

The type of collision candidate.

Parameters:
const std::vector<HashItem> &items

[in] The set of items.

const std::vector<AABB> &boxes

[in] The items’ boxes.

const std::function<bool(size_t, size_t)> &can_collide

[in] Function to determine if two items can collide.

std::vector<Candidate> &candidates

[out] The candidate collisions.

Spatial Hash

class SpatialHash : public ipc::BroadPhase;

Inheritence diagram for ipc::SpatialHash:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::SpatialHash" tooltip="ipc::SpatialHash" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for ipc::SpatialHash:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::SpatialHash" tooltip="ipc::SpatialHash" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Public Functions

SpatialHash() = default;
inline SpatialHash(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0double voxel_size = -1);
inline SpatialHash(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0double voxel_size = -1);
inline virtual std::string name() const override;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

inline virtual void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for static collision detection.

Parameters:
const Eigen::MatrixXd &vertices

Vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

inline virtual void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for continuous collision detection.

Parameters:
const Eigen::MatrixXd &vertices_t0

Starting vertices of the vertices.

const Eigen::MatrixXd &vertices_t1

Ending vertices of the vertices.

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radiusdouble voxel_size);
void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radiusdouble voxel_size);
inline virtual void clear() override;

Clear any built data.

inline bool is_vertex_index(int idx) const;

Check if primitive index refers to a vertex.

inline bool is_edge_index(int idx) const;

Check if primitive index refers to an edge.

inline bool is_triangle_index(int idx) const;

Check if primitive index refers to a triangle.

inline int to_edge_index(int idx) const;

Convert a primitive index to an edge index.

inline int to_triangle_index(int idx) const;

Convert a primitive index to a triangle index.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const override;

Find the candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const override;

Find the candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const override;

Find the candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const override;

Find the candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const override;

Find the candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const override;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

Public Members

ArrayMax3d left_bottom_corner;

The left bottom corner of the world bounding box.

ArrayMax3d right_top_corner;

The right top corner of the world bounding box.

ArrayMax3i voxel_count;

The number of voxels in each dimension.

double one_div_voxelSize;

1.0 / voxel_size

int voxel_count_0x1;

The number of voxels in the first two dimensions.

int edge_start_ind;
int tri_start_ind;
unordered_map<int, std::vector<int>> voxel_to_primitives;

Map from voxel index to the primitive indices it contains.

std::vector<std::vector<int>> point_to_voxels;

Map from point index to the voxel indices it occupies.

std::vector<std::vector<int>> edge_to_voxels;

Map from edge index to the voxel indices it occupies.

std::vector<std::vector<int>> face_to_voxels;

Map from face index to the voxel indices it occupies.

Protected Functions

void query_point_for_points(
    
int viunordered_set<int>vert_inds) const;
void query_point_for_edges(
    
int viunordered_set<int>edge_inds) const;
void query_point_for_triangles(
    
int viunordered_set<int>tri_inds) const;
void query_edge_for_edges(
    
int eaiunordered_set<int>edge_inds) const;
void query_edge_for_triangles(
    
int eiunordered_set<int>tri_inds) const;
void query_triangle_for_triangles(
    
int tiunordered_set<int>tri_inds) const;
int locate_voxel_index(const VectorMax3dp) const;
ArrayMax3i locate_voxel_axis_index(const VectorMax3dp) const;
void locate_box_voxel_axis_index(ArrayMax3d min_corner,
    
ArrayMax3d max_cornerArrayMax3imin_index,
    
ArrayMax3imax_indexconst double inflation_radius = 0) const;
int voxel_axis_index_to_voxel_index(
    
const ArrayMax3ivoxel_axis_index) const;
int voxel_axis_index_to_voxel_index(int ixint iyint iz) const;

Protected Attributes

int dim;
double built_in_radius;

Private Functions

template <typename Candidate, bool swap_order,
   
 bool triangular = false>
void detect_candidates(const std::vector<AABB>boxesA,
    
const std::vector<AABB>boxesB,
    
const std::function<void(int, unordered_set<int>&)>&
        
query_A_for_Bs
,
    
const std::function<bool(int, int)>can_collide,
    
std::vector<Candidate>candidates) const;

Detect candidate collisions between type A and type B.

Template Parameters:
typename Candidate

Type of candidate collision.

bool swap_order

Whether to swap the order of A and B when adding to the candidates.

bool triangular = false

Whether to consider (i, j) and (j, i) as the same.

Parameters:
const std::vector<AABB> &boxesA

[in] The boxes of type A to detect collisions with.

const std::vector<AABB> &boxesB

[in] The boxes of type B to detect collisions with.

const std::function<void(int, unordered_set<int>&)> &query_A_for_Bs

[in] Function to query boxes of type B for boxes of type A.

const std::function<bool(int, int)> &can_collide

[in] Function to determine if two primitives can collide given their ids.

std::vector<Candidate> &candidates

[out] The candidate collisions.

template <typename Candidate>
void detect_candidates(const std::vector<AABB>boxesA,
    
const std::function<void(int, unordered_set<int>&)>&
        
query_A_for_As
,
    
const std::function<bool(int, int)>can_collide,
    
std::vector<Candidate>candidates) const;

Detect candidate collisions between type A and type A.

Template Parameters:
typename Candidate

Type of candidate collision.

Parameters:
const std::vector<AABB> &boxesA

[in] The boxes of type A to detect collisions with.

const std::function<void(int, unordered_set<int>&)> &query_A_for_As

[in] Function to query boxes of type A for boxes of type A.

const std::function<bool(int, int)> &can_collide

[in] Function to determine if two primitives can collide given their ids.

std::vector<Candidate> &candidates

[out] The candidate collisions.

BVH

class BVH : public ipc::BroadPhase;

Inheritence diagram for ipc::BVH:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="ipc::BVH" tooltip="ipc::BVH" fillcolor="#BFBFBF"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for ipc::BVH:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="ipc::BVH" tooltip="ipc::BVH" fillcolor="#BFBFBF"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Public Functions

BVH() = default;
inline virtual std::string name() const override;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

virtual void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
const double inflation_radius = 0) override;

Build the broad phase for static collision detection.

Parameters:
const Eigen::MatrixXd &vertices

Vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

const double inflation_radius = 0

Radius of inflation around all elements.

virtual void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
const double inflation_radius = 0) override;

Build the broad phase for continuous collision detection.

Parameters:
const Eigen::MatrixXd &vertices_t0

Starting vertices of the vertices.

const Eigen::MatrixXd &vertices_t1

Ending vertices of the vertices.

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

const double inflation_radius = 0

Radius of inflation around all elements.

virtual void clear() override;

Clear any built data.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const override;

Find the candidate vertex-vertex collisions.

Parameters:
std::vector<VertexVertexCandidate> &candidates

[out] The candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const override;

Find the candidate edge-vertex collisions.

Parameters:
std::vector<EdgeVertexCandidate> &candidates

[out] The candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const override;

Find the candidate edge-edge collisions.

Parameters:
std::vector<EdgeEdgeCandidate> &candidates

[out] The candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const override;

Find the candidate face-vertex collisions.

Parameters:
std::vector<FaceVertexCandidate> &candidates

[out] The candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const override;

Find the candidate edge-face intersections.

Parameters:
std::vector<EdgeFaceCandidate> &candidates

[out] The candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const override;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

Protected Attributes

SimpleBVH::BVH vertex_bvh;

BVH containing the vertices.

SimpleBVH::BVH edge_bvh;

BVH containing the edges.

SimpleBVH::BVH face_bvh;

BVH containing the faces.

Protected Static Functions

static void init_bvh(
    
const std::vector<AABB>boxesSimpleBVH::BVHbvh);

Initialize a BVH from a set of boxes.

Parameters:
const std::vector<AABB> &boxes

[in] Set of boxes to initialize the BVH with.

SimpleBVH::BVH &bvh

[out] The BVH to initialize.

template <typename Candidate, bool swap_order = false,
   
 bool triangular = false>
static void detect_candidates(const std::vector<AABB>boxes,
    
const SimpleBVH::BVHbvh,
    
const std::function<bool(size_t, size_t)>can_collide,
    
std::vector<Candidate>candidates);

Detect candidate collisions between a BVH and a sets of boxes.

Template Parameters:
typename Candidate

Type of candidate collision.

bool swap_order = false

Whether to swap the order of box id with the BVH id when adding to the candidates.

bool triangular = false

Whether to consider (i, j) and (j, i) as the same.

Parameters:
const std::vector<AABB> &boxes

[in] The boxes to detect collisions with.

const SimpleBVH::BVH &bvh

[in] The BVH to detect collisions with.

const std::function<bool(size_t, size_t)> &can_collide

[in] Function to determine if two primitives can collide given their ids.

std::vector<Candidate> &candidates

[out] The candidate collisions.

Sweep and Prune

class SweepAndPrune : public ipc::BroadPhase;

Inheritence diagram for ipc::SweepAndPrune:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::SweepAndPrune" tooltip="ipc::SweepAndPrune" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for ipc::SweepAndPrune:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="ipc::BroadPhase" tooltip="ipc::BroadPhase"] "1" [label="ipc::SweepAndPrune" tooltip="ipc::SweepAndPrune" fillcolor="#BFBFBF"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Public Functions

SweepAndPrune() = default;
inline virtual std::string name() const override;

Get the name of the broad phase method.

Returns:

The name of the broad phase method.

virtual void build(const Eigen::MatrixXdvertices,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for static collision detection.

Parameters:
const Eigen::MatrixXd &vertices

Vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

virtual void build(const Eigen::MatrixXdvertices_t0,
    
const Eigen::MatrixXdvertices_t1,
    
const Eigen::MatrixXiedgesconst Eigen::MatrixXifaces,
    
double inflation_radius = 0) override;

Build the broad phase for continuous collision detection.

Parameters:
const Eigen::MatrixXd &vertices_t0

Starting vertex positions

const Eigen::MatrixXd &vertices_t1

Ending vertex positions

const Eigen::MatrixXi &edges

Collision mesh edges

const Eigen::MatrixXi &faces

Collision mesh faces

double inflation_radius = 0

Radius of inflation around all elements.

virtual void clear() override;

Clear any built data.

virtual void detect_vertex_vertex_candidates(
    
std::vector<VertexVertexCandidate>candidates) const override;

Find the candidate vertex-vertex collisions.

Parameters:
std::vector<VertexVertexCandidate> &candidates

[out] The candidate vertex-vertex collisions.

virtual void detect_edge_vertex_candidates(
    
std::vector<EdgeVertexCandidate>candidates) const override;

Find the candidate edge-vertex collisions.

Parameters:
std::vector<EdgeVertexCandidate> &candidates

[out] The candidate edge-vertex collisions.

virtual void detect_edge_edge_candidates(
    
std::vector<EdgeEdgeCandidate>candidates) const override;

Find the candidate edge-edge collisions.

Parameters:
std::vector<EdgeEdgeCandidate> &candidates

[out] The candidate edge-edge collisions.

virtual void detect_face_vertex_candidates(
    
std::vector<FaceVertexCandidate>candidates) const override;

Find the candidate face-vertex collisions.

Parameters:
std::vector<FaceVertexCandidate> &candidates

[out] The candidate face-vertex collisions.

virtual void detect_edge_face_candidates(
    
std::vector<EdgeFaceCandidate>candidates) const override;

Find the candidate edge-face intersections.

Parameters:
std::vector<EdgeFaceCandidate> &candidates

[out] The candidate edge-face intersections.

virtual void detect_face_face_candidates(
    
std::vector<FaceFaceCandidate>candidates) const override;

Find the candidate face-face collisions.

Parameters:
std::vector<FaceFaceCandidate> &candidates

[out] The candidate face-face collisions.

Protected Functions

virtual bool can_edge_vertex_collide(
    
size_t eisize_t vi) const override;
virtual bool can_edges_collide(
    
size_t eaisize_t ebi) const override;
virtual bool can_face_vertex_collide(
    
size_t fisize_t vi) const override;
virtual bool can_edge_face_collide(
    
size_t eisize_t fi) const override;
virtual bool can_faces_collide(
    
size_t faisize_t fbi) const override;

Protected Attributes

std::vector<scalable_ccd::AABB> vertex_boxes;
std::vector<scalable_ccd::AABB> edge_boxes;
std::vector<scalable_ccd::AABB> face_boxes;
mutable int vv_sort_axis = 0;
mutable int ev_sort_axis = 0;
mutable int ee_sort_axis = 0;
mutable int fv_sort_axis = 0;
mutable int ef_sort_axis = 0;
mutable int ff_sort_axis = 0;

Sweep and Tiniest Queue

AABB

class AABB;

Axis aligned bounding-box of some type.

Public Functions

AABB() = default;
AABB(const ArrayMax3dminconst ArrayMax3dmax);
inline AABB(const AABBaabb1const AABBaabb2);
inline AABB(
    
const AABBaabb1const AABBaabb2const AABBaabb3);
bool intersects(const AABBother) const;

Check if another AABB intersects with this one.

Parameters:
const AABB &other

The other AABB.

Returns:

If the two AABBs intersect.

Public Members

ArrayMax3d min;

Minimum corner of the AABB.

ArrayMax3d max;

Maximum corner of the AABB.

std::array<long, 3> vertex_ids;

Vertex IDs attached to the AABB.

Public Static Functions

static AABB from_point(
    
const VectorMax3dpconst double inflation_radius = 0);

Construct an AABB for a static point.

Parameters:
const VectorMax3d &p

The point’s position.

const double inflation_radius = 0

Radius of a sphere around the point which the AABB encloses.

Returns:

The constructed AABB.

static inline AABB from_point(const VectorMax3dp_t0,
    
const VectorMax3dp_t1const double inflation_radius = 0);

Construct an AABB for a moving point (i.e.

temporal edge).

Parameters:
const VectorMax3d &p_t0

The point’s position at time t=0.

const VectorMax3d &p_t1

The point’s position at time t=1.

const double inflation_radius = 0

Radius of a capsule around the temporal edge which the AABB encloses.

Returns:

The constructed AABB.

static void conservative_inflation(ArrayMax3dminArrayMax3dmax,
    
const double inflation_radius);

Compute a conservative inflation of the AABB.


Last update: Feb 18, 2025